Welcome to Waikato

The University of Waikato is one of the world’s leading universities, and the university of choice for more than 12,000 students each year.

Established in 1964 as a result of the demands of a local community, the University of Waikato is a world-ranked institution providing state-of-the art facilities for staff and students. The recently completed Law Building and award-winning Student Centre provide excellent spaces for teaching and learning.

Research is the lifeblood of the University and we continue to produce research and researchers who are providing answers to some of the key problems being faced by industries, governments and nations around the world. We have six research institutes which enable our postgraduate students to contribute to regional, national and global research.

Our graduates are committed to making a real difference for their employers. Our Curriculum Enhancement Programme will see us designing and delivering a more future-focused curriculum that is responsive to changing student, employment and societal needs. This includes components that mirror real-life situations, which helps create graduates who are work-ready and attractive to employers.

Data released in early 2016 by Universities New Zealand show the value of investing in a degree; a typical graduate earns about $1.6 million more over their working life than a non-graduate, and those with masters or honours degrees were earning about 9% more than bachelor level, and those with a PhD were earning 22% more than masters or honours level.

Whatever your journey, the University of Waikato provides an outstanding learning environment and we look forward to seeing you on campus.

Professor Neil Quigley
Vice-Chancellor
Welcome to Science & Engineering

New Zealand and the world needs people with curious minds who are willing to ask the hard questions and who will work towards creating a bright future. The grand challenges facing society demand research and developments that transcend disciplinary boundaries, requiring an increase in flexibility in the way we seek to understand the world and the ways we prepare students to meet society’s future needs.

The Faculty of Science & Engineering is a cohesive cross-disciplinary unit, providing wider opportunities in teaching, research and innovation. We offer flexible programmes that produce multi-skilled, adaptable graduates who are ready for the challenges of today and have the skills to tackle the obstacles of tomorrow. Our students’ career prospects are limited only by their interests and their imagination. Our graduates find themselves employed throughout New Zealand and overseas in a wide range of well-paid, interesting and stimulating occupations.

Our academics have national and international reputations in their subjects and place an emphasis on maintaining a productive balance between the growth areas of science and engineering and applying that knowledge with technological application - to give practical solutions. Along with having very well equipped laboratories and workshops, our academics are well placed to address many of the challenges outlined in New Zealand’s National Science Challenges and the UN’s Millennium Development Goals.

Professor Chad Hewitt
Dean, Faculty of Science

Professor Janis Swan
Acting Dean, Faculty of Engineering
Contents

Contact details
How to enrol
Degrees
Entry requirements
Bachelor of Engineering (Honours)
BE(Hons) programmes
- Chemical and Biological Engineering
- Civil Engineering
- Electronic Engineering
- Environmental Engineering
- Materials and Process Engineering
- Mechanical Engineering
- Software Engineering
Bachelor of Science
Bachelor of Science (Technology)
- Animal Behaviour
- Biochemistry
- Biological Sciences
- Biotechnology
- Chemistry
- Earth Sciences
- Electronics
- Environmental Sciences
- Materials and Process Engineering
- Psychology
Specialisations
- Science International
- Te Pūtaiao me ngā take Māori
Conjoint degrees
Work placements
Other programmes
- Intermediates
- Bridging programmes
- Foundation Studies
- Certificate of University Preparation – CUP
Papers
- Understanding paper codes
- 100 level Science papers
- Biological Sciences
- Chemistry
- Civil Engineering
- Earth Sciences
- Electronics
- Engineering
- Environmental Sciences
- Materials and Process Engineering
- Physics
- Psychology
- Science
- Work placements
General information
- Handy tips
- Changing papers
- Impaired performance
- Support networks
- Scholarships
- After-hours access
- General rules
- Computer labs
- Discipline policy
- Safety policy
- Common university terms
- Teaching and assessment periods 2017
Index

Information in this handbook is correct at the time of printing but may change subject to considerations such as staffing, viability, and other causes outside the Faculty’s control. The University’s official statement of degree requirements, papers offered, and managed entry criteria is the **2017 University of Waikato Calendar**, to which students should also refer.
Contact details

The Faculty Office FG.G.04

The Faculty Office can help you with the following:
- Information about your papers and your qualification
- Enrolment and programme advice
- Entry and re-entry decisions
- Degree planning
- Student orientation
- Academic support for Māori and international students, and
- Dealing with other parts of the University and outside organisations such as StudyLink.

<table>
<thead>
<tr>
<th>Role</th>
<th>Room</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dean of Science</td>
<td>FG.G.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor Chad Hewitt</td>
<td>FG.G.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acting Dean of Engineering</td>
<td>FG.G.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor Janis Swan</td>
<td>FG.G.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty Registrar</td>
<td>FG.G.06</td>
<td>07 838 4290</td>
<td>tobrien@waikato.ac.nz</td>
</tr>
<tr>
<td>Tim O’Brien</td>
<td>FG.G.06</td>
<td>07 838 4290</td>
<td>tobrien@waikato.ac.nz</td>
</tr>
<tr>
<td>Associate Dean (Teaching and Learning)</td>
<td>FG.G.06D</td>
<td>07 838 4582</td>
<td>a.campbell@waikato.ac.nz</td>
</tr>
<tr>
<td>Dr Alison Campbell</td>
<td>FG.G.06D</td>
<td>07 838 4582</td>
<td>a.campbell@waikato.ac.nz</td>
</tr>
<tr>
<td>Associate Dean (Research)</td>
<td>TRU.G.23</td>
<td>07 838 4593</td>
<td>caryc@waikato.ac.nz</td>
</tr>
<tr>
<td>Professor Craig Cary</td>
<td>TRU.G.23</td>
<td>07 838 4593</td>
<td>caryc@waikato.ac.nz</td>
</tr>
<tr>
<td>Associate Dean (International)</td>
<td>CD.3.03</td>
<td>07 838 4630</td>
<td>rainer@waikato.ac.nz</td>
</tr>
<tr>
<td>Associate Professor</td>
<td>CD.3.03</td>
<td>07 838 4630</td>
<td>rainer@waikato.ac.nz</td>
</tr>
<tr>
<td>Rainer Künnemeyer</td>
<td>CD.3.03</td>
<td>07 838 4630</td>
<td>rainer@waikato.ac.nz</td>
</tr>
<tr>
<td>Cooperative Education Unit Director</td>
<td>E.G.16A</td>
<td>07 838 4892</td>
<td>k.zegwaard@waikato.ac.nz</td>
</tr>
<tr>
<td>Dr Karsten Zegwaard</td>
<td>E.G.16A</td>
<td>07 838 4892</td>
<td>k.zegwaard@waikato.ac.nz</td>
</tr>
<tr>
<td>Chair of Coastal Science</td>
<td></td>
<td>07 557 0481</td>
<td>cbatters@waikato.ac.nz</td>
</tr>
<tr>
<td>Professor Chris Battershill</td>
<td></td>
<td>07 557 0481</td>
<td>cbatters@waikato.ac.nz</td>
</tr>
<tr>
<td>Māori Science Support Officer</td>
<td>R.1.07</td>
<td>07 837 9384</td>
<td>keastwoo@waikato.ac.nz</td>
</tr>
</tbody>
</table>

Please assist us in looking after the environment by returning this handbook (unmarked and undamaged) to the FSEN reception when you are finished with it so that we may reuse it. Thank you.
Contact details

School offices
School offices can provide specialised help. Through these offices you can contact the lecturers and Co-ordinators for each of your papers, collect handouts and hand in assignments as directed. The programme convenor of your major subject can advise you on your choice of advanced papers.

School of Science
The School of Science administers the majors of Animal Behaviour, Biochemistry, Biological Sciences, Biotechnology, Chemistry, Earth Sciences and Environmental Sciences.

Room: E.2.20
Phone: 07 838 4148
Email: sciadmin@waikato.ac.nz
Web: sci.waikato.ac.nz

Assistant Dean (Academic) Phone: 07 837 9391
Dr Jo Lane Email: jlane@waikato.ac.nz

Assistant Dean (Research) Phone: 07 838 4123
Associate Professor Karin Bryan Email: kbryan@waikato.ac.nz

School of Engineering
The School of Engineering administers the specified programmes in the BE(Hons) degrees and also the majors in Electronics, Materials and Processing and Physics in the BSc and BSc(Tech) degrees.

Room: E.2.07
Phone: 07 838 4266 or 07 838 4026
Email: engineering@waikato.ac.nz
Web: eng.waikato.ac.nz

Psychology Room: K.1.14
Phone: 07 838 4032
Email: psychology@waikato.ac.nz

Cooperative Education Unit – Work placements Room: E.G.04
Phone: 07 837 9454
Email: co-opworkplacements@waikato.ac.nz
First year mentors

The first-year mentors for the Faculty of Science & Engineering are available to answer questions and give advice to first-year students. They can help with the transition to university life and help you with any questions you might have about the papers you have selected and how they prepare you for your future career.

<table>
<thead>
<tr>
<th>Field</th>
<th>Room</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td>R.1.06</td>
<td>07 837 9376</td>
<td>btulloch@waikato.ac.nz</td>
</tr>
<tr>
<td>Ms Brydget Tulloch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>E.3.21</td>
<td>07 838 4656</td>
<td>hende@waikato.ac.nz</td>
</tr>
<tr>
<td>Professor Bill Henderson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth Sciences</td>
<td>E.1.09</td>
<td>07 838 4383</td>
<td>hneedham@waikato.ac.nz</td>
</tr>
<tr>
<td>Dr Hazel Needham</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>LSL.G.32</td>
<td>07 838 4684</td>
<td>r.torrens@waikato.ac.nz</td>
</tr>
<tr>
<td>Dr Rob Torrens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Sciences</td>
<td>DE.1.02</td>
<td>07 838 4109</td>
<td>erth1270@waikato.ac.nz</td>
</tr>
<tr>
<td>Dr Megan Balks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>DE.2.01</td>
<td>07 838 4340</td>
<td>asr@waikato.ac.nz</td>
</tr>
<tr>
<td>Associate Professor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alistair Steyn-Ross</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How to enrol

To complete an application now:

- Visit the University of Waikato website: waikato.ac.nz
- An application to enrol may be completed online at waikato.ac.nz/study/enrol
- Call 0800 WAIKATO (0800 924 5286) for an application pack.

If you wish to discuss your application, programme of study or would like further information about studying at the University of Waikato, please contact the Faculty Office. We are happy to discuss your options. See contact details on page 5.
Degrees

Entry requirements 9
Bachelor of Engineering (Honours) 11
BE(Hons) programmes 12
Bachelor of Science 37
Bachelor of Science (Technology) 39
Conjoint degrees 74
Work placements 75
Other programmes 77
Entry requirements

Guaranteed admission

You are guaranteed a place in the Faculty of Science & Engineering if you:

• Apply online or submit an Application to Enrol, and
• Meet the requirements for the University Entrance standard (or equivalent), and
• Meet any additional requirements for the qualification you have selected.

Bachelor of Science and Bachelor of Science (Technology) (BSc and BSc(Tech))

Many of the subjects offered at Waikato have prerequisites on their core papers. If you have not achieved the specified prerequisites through your study at level 2 and level 3 NCEA, you may have to take additional papers or foundation courses to satisfy these prerequisites. Applicants in this situation are advised that not all papers undertaken may count toward the completion of the degree and that their programme of study may take additional time. Other applications will be treated on a case by case basis.

Bachelor of Engineering (Honours) (BE(Hons))

If you do not meet the Guaranteed Admission requirements for the BE(Hons) specified programmes set out below, we strongly recommend that you contact the Faculty Office to discuss a programme of study.

Civil Engineering, Electronic Engineering and Mechanical Engineering

You must gain University Entrance, including a minimum of 16 credits in NCEA at level 3 in Calculus (from standards 3.1, 3.2, 3.3, 3.5, 3.6, 3.7, or 3.15), and 14 credits in Physics at level 3.

Chemical and Biological Engineering, Environmental Engineering, and Materials and Process Engineering

You must gain University Entrance, including a minimum of 16 credits in NCEA at level 3 in Calculus (from standards 3.1, 3.2, 3.3, 3.5, 3.6, 3.7, or 3.15), and at least 16 credits in Chemistry and 14 credits in Physics at level 3.

Software Engineering

You must gain University Entrance, including a minimum of 16 credits in NCEA at level 3 in Calculus (from standards 3.1, 3.2, 3.3, 3.5, 3.6, 3.7, or 3.15) and at least 14 credits in NCEA at level 3 in two other approved subjects.
Discretionary entrance (entry from NCEA)

Applicants will normally be granted Discretionary Entrance if they have gained a total of at least 80 credits in four subjects at level 2 NCEA with a minimum grade of merit in at least half of the achievement standards for each subject. Applicants must also have satisfied the numeracy and literacy requirements for University Entrance. Applications must be supported by the applicant's school principal or the University’s student recruitment officers.

Special admission

Students over the age of 20 are eligible to apply for admission to all of the Faculty’s programmes. Most first year science papers assume some prior knowledge and some students may be required to complete bridging study such as the Certificate of University Preparation (see page 80).

Admission with credit for previous study

You can apply for credit for degree level study completed at another tertiary institution. Any credit awarded depends on the type of qualification studied and the level, content and number of papers passed. Details are also available on the Tertiary Education Alliance website at tea.ac.nz

To apply for credit, tick the relevant box on the Application to Enrol form and supply a verified copy of your official academic record of your previous study. Details are also available at waikato.ac.nzstudy/transfer-credit If you have any further questions about credit, the Faculty Office or the Student Information Centre in the Student Centre can help.
Bachelor of Engineering (Honours) BE(Hons)

Engineers seek to build useful products and services using the understanding of the laws governing natural processes. The BE(Hons) is a four-year, full-time degree designed to prepare you to apply advanced scientific knowledge in a constructive and effective way.

There are seven specified programmes: Chemical and Biological Engineering, Civil Engineering, Electronic Engineering, Environmental Engineering, Materials and Process Engineering, Mechanical Engineering and Software Engineering. Our Cooperative Education Unit will help you find the work experience to complete 800 hours of paid relevant workplace experience to prepare you for professional registration.

Degree length

The BE(Hons) requires four years of full-time study or the equivalent in part-time study. Students must also complete at least 800 hours of work experience.

Requirements

- 480 points at 100, 200, 300 and 400 levels in papers outlined by the chosen specified programme (equivalent to four years full-time study).
- No more than 120 points at 100 level.
- Complete the requirements of one of the specified engineering programmes.
- 800 hours of work experience.

BE(Hons) Work placement papers

Work placements are a compulsory component of the BE(Hons). Please refer to page 131 for details of BE(Hons) Work placement papers.

Refer to page 75 for contact details of Work placement Co-ordinators.

General structure of the BE(Hons) degrees

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th>ENGG180</th>
<th>ENMP102</th>
<th>ENGG182</th>
<th>ENGG183</th>
<th>ENGG184</th>
<th>SPECIFIED</th>
<th>SPECIFIED</th>
<th>SPECIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 level</td>
<td>100 level</td>
<td></td>
</tr>
<tr>
<td>YEAR 2</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>ENGG279</td>
<td>ENGG371</td>
</tr>
<tr>
<td>YEAR 3</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>ENGG379</td>
<td>ENGG372</td>
</tr>
<tr>
<td>YEAR 4</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>SPECIFIED</td>
<td>DESIGN PROJECT</td>
<td>ENGG492</td>
<td></td>
</tr>
</tbody>
</table>

- Specified – These papers are specified by the programme and are given in the subjects and papers section of this handbook.
- Design Project – A major design project (60 points) is undertaken in Year 4.

*ENGG371 and ENGG372 are usually completed in the summer break and can be taken in Year 4 by negotiation.
BE(Hons) programmes

<table>
<thead>
<tr>
<th>Programme</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical and Biological Engineering</td>
<td>13</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>16</td>
</tr>
<tr>
<td>Electronic Engineering</td>
<td>19</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>22</td>
</tr>
<tr>
<td>Materials and Process Engineering</td>
<td>27</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>30</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>33</td>
</tr>
</tbody>
</table>
Chemical and Biological Engineering

The Chemical and Biological Engineering programme has a core of process engineering plus a set of papers that are specific to biological processing, chemical processing, materials, or environmental processing.

This programme covers processing and producing a diverse range of biochemicals, chemicals and materials, or environmental treatment, and provides an excellent basis for a career in bioprocessing, food and pharmaceutical industries, materials and chemical industries and environmental treatment. A major focus is on processing and developing high-value products. There is a major research, design and development project in the fourth year of the programme.

This specified engineering programme has full IPENZ accreditation, making the Bachelor of Engineering (Honours) a nationally and internationally recognised degree.

Contacts for the School of Engineering

<table>
<thead>
<tr>
<th>Enrolment Contact Person</th>
<th>Room:</th>
<th>LSL.G.32</th>
</tr>
</thead>
<tbody>
<tr>
<td>and First Year Mentor</td>
<td>Phone:</td>
<td>07 838 4684</td>
</tr>
<tr>
<td>Dr Rob Torrens</td>
<td>Email:</td>
<td>r.torrens@waikato.ac.nz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convenor</th>
<th>Room:</th>
<th>C.3.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td>Phone:</td>
<td>07 838 4947</td>
</tr>
<tr>
<td>Johan Verbeek</td>
<td>Email:</td>
<td>jverbeek@waikato.ac.nz</td>
</tr>
</tbody>
</table>
General structure of the Chemical and Biological Engineering Programme

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>ENGG180</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENMP102</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENGG182</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENGG183</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENGG184</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENGG110</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>CHEM112</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>STREAM *</td>
<td>15 points</td>
</tr>
<tr>
<td>Year 2</td>
<td>ENGG282</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>ENGG283</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>ENMP221</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENMP223</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENGG279</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>ENGG371</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>STREAM *</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>STREAM *</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 3</td>
<td>ENGG381</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENMP321</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENMP323</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENGG285</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>plus either</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH257</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>MATH259</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>ENGG379</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>ENGG372</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>STREAM *</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>STREAM *</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 4</td>
<td>ENMP422</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>DESIGN PROJECT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGG492</td>
<td>60 points</td>
</tr>
<tr>
<td></td>
<td>ELECTIVE **</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>STREAM *</td>
<td>20 points</td>
</tr>
</tbody>
</table>

- Design Project – A major design project (60 points).
- *Stream specific elective.
- **Choose 20 points from any subject(s) at 200 level or above.

Streams for the Chemical and Biological Engineering Programme

Biological Processing

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>BIOL101</td>
<td>15 points</td>
</tr>
<tr>
<td>Year 2</td>
<td>BIOL251</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>CHEM2XX</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 3</td>
<td>ENMP322</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENMP325</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 4</td>
<td>ENMP427</td>
<td>20 points</td>
</tr>
</tbody>
</table>

Chemical Processing

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>CHEM111</td>
<td>15 points</td>
</tr>
<tr>
<td>Year 2</td>
<td>ENMP211</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>CHEM2XX</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 3</td>
<td>ENMP311</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENMP322</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 4</td>
<td>ENMP427</td>
<td>20 points</td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>CHEM111</td>
<td>15 points</td>
</tr>
<tr>
<td>Year 2</td>
<td>ENMP213</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>CHEM2XX</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 3</td>
<td>ENMP311</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENMP313</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 4</td>
<td>ENMP411</td>
<td>10 points</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>ENVS101</td>
<td>15 points</td>
</tr>
<tr>
<td>Year 2</td>
<td>CHEM2XX</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENMP241</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 3</td>
<td>ENMP341</td>
<td>20 points</td>
</tr>
<tr>
<td>Year 4</td>
<td>ENMP442</td>
<td>20 points</td>
</tr>
</tbody>
</table>
Year 1

CHEM112B – Chemical Reactivity 15 points
ENGG110 – Engineering Mechanics 15 points
ENGG180A – Foundations of Engineering 15 points
ENGG182A/B – Engineering Computing 15 points
ENGG183A/B – Linear Algebra and Statistics for Engineers 15 points
ENGG184A/B/S – Calculus for Engineers 15 points
ENMP102B – Introduction to Materials Science and Engineering 15 points
Plus 15 points from the Stream papers.

Year 2

ENGG279B – Preparation for the Professional Work Place 0 points
ENGG282B – Engineering Design 10 points
ENGG283A – Linear Algebra for Engineers 10 points
ENGG284B – Differential Equations for Engineers 10 points
ENGG371C – Engineering Work Placement 10 points
ENMP221A – Engineering Thermodynamics 20 points
ENMP223B – Thermofluids 20 points
ENMP282A – Science and Engineering Management A 10 points
Plus 40 points from the Stream papers.

Year 3

ENGG285A – Multivariable Calculus for Engineers 10 points
ENGG372C – Engineering Work Placement 20 points
ENGG379A – Reflection on Professional Workplace Experience 0 points
ENGG381A – Engineering Statistics 20 points
ENMP321B – Process Engineering and Design 20 points
ENMP323A – Transport Processes and Unit Operations 20 points
MATH257A – Computational Mathematics 10 points or
MATH259B – Mathematical modelling 10 points
Plus 40 points from the Stream papers.

Year 4

ENGG492A/B/C/Y – Honours Research and Management Project 60 points
ENMP422A – Advanced Process Simulation and Control 20 points
Plus 20 points from the Stream papers.
Plus 20 points from papers at 200 level or above.

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): CHEM Chemistry; ENGG Engineering; ENMP Materials and Processing; PHYS Physics. For descriptions of papers with the subject codes COMP, MATH or STAT, refer to the Faculty of Computing & Mathematical Sciences Handbook, or the 2017 University of Waikato Calendar.
Civil Engineering

The Civil Engineering programme encompasses the core knowledge expected of a professional civil engineer in structures, Geomechanics, water supply and waste water systems, transportation and construction.

Civil engineers design infrastructure such as buildings, roads, dams, railways, ports and power stations and oversee their construction. They work in a broad range of areas such as earthquake proofing, energy recovery, water/waste management, power generation, road networks, transport management, agriculture and forestry development.

As a Civil Engineering graduate from the University of Waikato you will have the practical and theoretical skills to help create, improve and protect our built and natural environments. You will be ready to meet the strong demand for your skills both in New Zealand and around the world.

Contacts for the School of Engineering

<table>
<thead>
<tr>
<th>Enrolment Contact Person</th>
<th>Room:</th>
<th>LSL.G.32</th>
</tr>
</thead>
<tbody>
<tr>
<td>and First Year Mentor</td>
<td>Phone:</td>
<td>07 838 4684</td>
</tr>
<tr>
<td>Dr Rob Torrens</td>
<td>Email:</td>
<td>r.torrens@waikato.ac.nz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convenor</th>
<th>Room:</th>
<th>DE.2.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Ilanko</td>
<td>Phone:</td>
<td>07 837 9380</td>
</tr>
<tr>
<td></td>
<td>Email:</td>
<td>ilanko@waikato.ac.nz</td>
</tr>
</tbody>
</table>
General structure of the Civil Engineering Programme

<table>
<thead>
<tr>
<th>Year</th>
<th>Course Code</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 1</td>
<td>ENGG180</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENMP102</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENGG182</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENGG183</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENGG184</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ENGG110</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ERTH103</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>15 points</td>
</tr>
<tr>
<td>YEAR 2</td>
<td>ENCV220</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENCV221</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>ENCV230</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>ENCV240</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>ENCV250</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENCV280</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENMP241</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENGG279</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>ENGG371</td>
<td>0 points</td>
</tr>
<tr>
<td>YEAR 3</td>
<td>ENCV320</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENCV322</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENCV321</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>ENCV330</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>ENCV340</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENCV350</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENCV381</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ENGG372</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>ENGG379</td>
<td>0 points</td>
</tr>
<tr>
<td>YEAR 4</td>
<td>ENCV480</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>ENCV490</td>
<td>30 points</td>
</tr>
<tr>
<td></td>
<td>ENCV495</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ELECTIVES</td>
<td>** 50 points</td>
</tr>
</tbody>
</table>

Work Placement – Work experience in an appropriate and approved industry or applied field (0 points).

Year 1

- **ENGG110B** – Engineering Mechanics 15 points
- **ENGG180A** – Foundations of Engineering 15 points
- **ENGG182A/B** – Engineering Computing 15 points
- **ENGG183A/B** – Linear Algebra and Statistics for Engineers 15 points
- **ENGG184A/B/S** – Calculus for Engineers 15 points
- **ENMP102B** – Introduction to Materials Science and Engineering 15 points
- **ERTH103B** – Discovering Planet Earth 15 points

*Choose 15 points from:

- **PHYS103B** – Physics for Scientists and Engineers 15 points
- **CHEM100A** – Chemistry in Context 15 points or
- **CHEM112B** – Chemical Reactivity 15 points
- **CHEM111A/T** – Structure and Spectroscopy
Year 2

ENCV220A – Mechanics of Materials 20 points
ENCV221C – Introduction to Structural Design and Loads 10 points
ENCV230A – Geomechanics 1 10 points
ENCV240C – Fluid Mechanics 1 10 points
ENCV250A – Civil Engineering Modelling
ENCV260A – Civil Materials 10 points
ENMP241C – Environmental Technology 1 20 points
ENCV280C – Construction Engineering 20 points
ENGG279C – Preparation for the Professional Workplace 0 points
ENGG371C – Engineering Work Placement 1 0 points

Year 3

ENCV320A – Structural Engineering and Design 1 20 points
ENCV321A – Structural Dynamics 10 points
ENCV322C – Structural Engineering and Design 2 20 points
ENCV330A – Geomechanics 2 10 points
ENCV340C – Advanced Fluid Mechanics & Design 20 points
ENCV350A – Engineering Modelling and Analysis 20 points
ENCV381C – Surveying & Road Design 20 points
ENGG372C – Engineering Work Placement 2 0 points
ENGG379A – Reflection on Professional Workplace Experience 0 points

Year 4

ENCV480A – Management (Project and Teamwork) 10 points
ENCV490A/B/Y – Research Project 30 points
ENCV495A/B/Y – Design Project 20 points
ENCV430A – Foundation Engineering 10 points

**Choose 50 points from:
ENMP413B – Materials Performance in Service 10 points
ENME451B – Mechanics of Vibration 10 points
ENCV420A – Advanced Structural Design 20 points
ENCV421B – Earthquake Design 20 points
ENCV431A/B – Advanced Geotechnical Engineering 20 points
ENME440A – Finite Element Methods 20 points

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): CHEM Chemistry; ENGG Engineering; ENMP Materials and Processing; PHYS Physics. For descriptions of papers with the subject codes COMP, MATH or STAT, refer to the Faculty of Computing & Mathematical Sciences Handbook, or the 2017 University of Waikato Calendar.
Electronic Engineering

Electronic engineering is concerned with the design, development, manufacture and application of electronic devices, circuits and systems. The ideas electronic engineers have turned into reality gave us, for example, personal computers, mobile phones, pacemakers, radio, television, industrial control and satellite communication systems.

New Zealand’s electronics manufacturing industry is one of the fastest growing industries in the country. Companies are targeting niche markets, such as telecommunications, and export their products all over the world.

The programme offers papers in design and a major electronic engineering project in the fourth year of study. Extensive experience is attained in electronic laboratories. Economic and professional training elements are also included.

This specified engineering programme has full IPENZ accreditation, making the Bachelor of Engineering (Honours) a nationally and internationally recognised degree.

Electronics is available as a major subject for the Bachelor of Science or Bachelor of Science (Technology) degrees. See pages 56-57 for more details. Papers in electronics are available at all levels of study from undergraduate degrees through to postgraduate and doctoral studies. See page 103 for details of Electronics papers.

Contacts for the School of Engineering

Enrolment Contact Person and First Year Mentor	Room: LSL.G.32
Dr Rob Torrens	Phone: 07 838 4684
	Email: r.torrens@waikato.ac.nz

Convenor	Room: CD.1.03
Professor Jonathan Scott	Phone: 07 838 4909
	Email: scottj@waikato.ac.nz
Programme details

Structure of the Electronic Engineering Programme

<table>
<thead>
<tr>
<th>Year 1</th>
<th>ENGG180</th>
<th>ENMP102</th>
<th>ENGG182</th>
<th>ENGG183</th>
<th>ENGG184</th>
<th>ENEL111</th>
<th>PHYS103</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 points</td>
</tr>
<tr>
<td>Year 2</td>
<td>ENEL205</td>
<td>ENEL212</td>
<td>ENEL284</td>
<td>ENEL285</td>
<td>ENEL282</td>
<td>ENEL284</td>
<td>ENEL287</td>
<td>ENEL279</td>
</tr>
<tr>
<td></td>
<td>20 points</td>
<td>10 points</td>
<td>10 points</td>
<td>10 points</td>
<td>10 points</td>
<td>10 points</td>
<td>10 points</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>COMP200</td>
<td>ENEL285</td>
<td>ENEL283</td>
<td>ENEL285</td>
<td>ENEL282</td>
<td>ENEL285</td>
<td>ENEL282</td>
<td>ENEL279</td>
</tr>
<tr>
<td></td>
<td>10 points</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>ENEL312</td>
<td>ENEL317</td>
<td>ENEL320</td>
<td>ENEL324</td>
<td>ENEL382</td>
<td>ENEL382</td>
<td>ENMP215</td>
<td>ENMP279</td>
</tr>
<tr>
<td></td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>10 points</td>
<td>0 points</td>
</tr>
<tr>
<td></td>
<td>ENMP282</td>
<td>ENEL325</td>
<td>ENEL382</td>
<td>ENEL382</td>
<td>ENEL382</td>
<td>ENEL382</td>
<td>ENMP215</td>
<td>ENEL379</td>
</tr>
<tr>
<td></td>
<td>10 points</td>
<td>0 points</td>
</tr>
<tr>
<td>Year 4</td>
<td>ENGG381</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>DESIGN PROJECT</td>
<td>ENGG492</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>60 points</td>
<td>0 points</td>
<td>0 points</td>
<td>0 points</td>
</tr>
</tbody>
</table>

- **Work Placement** – Work experience in an appropriate and approved industry or applied field (0 points).
- **Design Project** – A major design project (60 points).

Year 1

- ENEL111A/T – Introduction to Electronics (A and T Semesters) 15 points
- ENGG182A/B – Engineering Computing 15 points
- ENGG180A – Foundations of Engineering 15 points
- ENGG183A/B – Linear Algebra and Statistics for Engineers 15 points
- ENGG184A/B/S – Calculus for Engineers 15 points
- ENMP102B – Introduction to Materials Science and Engineering 15 points
- PHYS103B – Physics for Scientists and Engineers 1 15 points

*Choose 15 points from: 100 level Science papers (excluding COMP123, MATH165, MATH166, MATH168, PHYS100)

Recommended papers

- BIOL101B – Cellular and Molecular Biology 15 points
- CHEM100A – Chemistry in Context 15 points
- CHEM111A – Structure and Spectroscopy 15 points
- COMP104B/S – Introduction to Computer Science 2 15 points
Year 2

COMP200A – Computer Systems 10 points
ENEL205B – Analog Electronics and Circuit Analysis 20 points
ENEL212A – Electronics for Digital Systems 10 points
ENEL284B – Electricity and Magnetism 10 points
ENEL285A – Quantum and Solid State Physics 10 points
ENGG279B – Preparation for the Professional Workplace 0 points
ENGG282B – Engineering Design 10 points
ENGG283A – Linear Algebra for Engineers 10 points
ENGG284B – Differential Equations for Engineers 10 points
ENGG285A – Multivariable Calculus for Engineers 10 points
ENGG287A – Engineering Applications 10 points
ENMP215B – Manufacturing Technology 10 points
ENGG371C – Engineering Work Placement 10 points

Year 3

ENEL312A – Electromagnetic Waves 20 points
ENEL317B – Microprocessor Applications and Control 20 points
ENEL321B – Application Specific Integrated Circuits 20 points
ENEL324A – Optoelectronics 20 points
ENEL382B – High Speed Communications 20 points
ENGG372C – Engineering Work Placement 20 points
ENGG379C – Reflection on Professional Workplace Experience 0 points
ENMP282A – Science and Engineering Management A 10 points
MATH257A – Computational Mathematics 10 points

Year 4

ENGG381A – Engineering Statistics 20 points
ENGG492A/B/C/Y – Honours Research and Management Project 60 points

**Choose 40 points from:

ENEL301A/B/C/Y – Special Topics in Electronics 20 points
ENEL417A – Mechatronics 20 points
ENEL423B – Electro-optical Instrumentation 20 points
ENEL485B – Power Electronics 20 points
ENGG401A – Control Theory and Image Processing 20 points

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): BIOL Biological Sciences; ENEL Electronics; ENGG Engineering; ENMP Materials and Processing; PHYS Physics. For descriptions of papers with subject codes COMP or MATH, refer to the Faculty of Computing & Mathematical Sciences Handbook or the 2017 University of Waikato Calendar.
Environmental Engineering

The Environmental Engineering programme combines the fundamentals of engineering, science, mathematics and computing with the study of water resources, water quality, earth and ocean environments, environmental planning, modelling and sustainability, process energy and management.

Environmental engineers make a major contribution to mitigating environmental harm. As the world’s demand for materials, food and energy grows it is environmental engineers who ensure that practices are developed to meet this demand, and contribute to protecting and enhancing our natural and man-made environments.

Contacts for the School of Engineering

Enrolment Contact Person	Room:	LSL.G.32
and First Year Mentor	Phone:	07 838 4684
Dr Rob Torrens	Email:	r.torrens@waikato.ac.nz

Convenor	Room:	EF.2.03
Dr Graeme Glasgow	Phone:	07 858 5269
	Email:	graemeg@waikato.ac.nz
General structure of the Environmental Engineering Programme

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th>YEAR 2</th>
<th>YEAR 3</th>
<th>YEAR 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG180</td>
<td>ENCV250</td>
<td>ENCV340</td>
<td>ENEV443</td>
</tr>
<tr>
<td>15 points</td>
<td>20 points</td>
<td>20 points</td>
<td>10 points</td>
</tr>
<tr>
<td>ENMP102</td>
<td>ENVP206</td>
<td>ENCV350</td>
<td>ENMP442</td>
</tr>
<tr>
<td>15 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
</tr>
<tr>
<td>ENGG182</td>
<td>ENCV240</td>
<td>ENMP321</td>
<td>****</td>
</tr>
<tr>
<td>15 points</td>
<td>10 points</td>
<td>20 points</td>
<td>30 points</td>
</tr>
<tr>
<td>ENGG183</td>
<td>ENGG282</td>
<td>ENMP341</td>
<td>****</td>
</tr>
<tr>
<td>15 points</td>
<td>10 points</td>
<td>20 points</td>
<td>60 points</td>
</tr>
<tr>
<td>ENGG184</td>
<td>ENMP221</td>
<td>ERTH352</td>
<td>ENPG492</td>
</tr>
<tr>
<td>15 points</td>
<td>20 points</td>
<td>10 points</td>
<td></td>
</tr>
<tr>
<td>ENNG110</td>
<td>ENMP241</td>
<td>ENNG379</td>
<td></td>
</tr>
<tr>
<td>* 15 points</td>
<td>0 points</td>
<td>* 0 points</td>
<td></td>
</tr>
<tr>
<td>* 15 points</td>
<td>ENGG371</td>
<td>** 0 points</td>
<td></td>
</tr>
</tbody>
</table>

Work Placement – Work experience in an appropriate and approved industry or applied field (0 points).

Year 1

- **ENGG110B – Engineering Mechanics** 15 points
- **ENGG180A – Foundations of Engineering** 15 points
- **ENGG182A/B – Engineering Computing** 15 points
- **ENGG183A/B – Linear Algebra and Statistics for Engineers** 15 points
- **ENGG184A/B/S – Calculus for Engineers** 15 points
- **ENMP102B – Introduction to Materials Science and Engineering** 15 points

*Choose 15 points from:
- **CHEM111A – Structure and Spectroscopy** 15 points
- **CHEM112B – Chemical Reactivity** 15 points

*Choose another 15 points from:
- **GEOG101B – People and Place: Introduction to Social and Cultural Geography** 15 points
- **GEOG103A – Resources and Environmental Sustainability** 15 points
- **ECON110B – Economics and Society** 15 points or

The following papers are recommended for the Earth Science and Engineering theme:
- **ERTH103B – Discovering Planet Earth** 15 points
- **ERTH104A – Earth & Ocean Environments** 15 points

The following papers are recommended for the Environmental Biology theme:
- **BIOL101B – Cell and Molecular Biology** 15 points
- **BIOL102A – The Biology of Organisms** 15 points
Year 2

ENCV240C – Fluid Mechanics 1 10 points
ENCV250A – Civil Engineering Modelling 20 points
ENMP221A – Engineering Thermodynamics 20 points
ENMP241C – Environmental Technology 1 20 points
ENGG279C – Preparation for the Professional Workplace 0 points
ENGG282B – Engineering Design 10 points
ENGG371C – Engineering Work Placement 1 0 points
ENVP206A – Principles of Environmental Planning 20 points
ERTH251B – Engineering Geomorphology 10 points

Choose 20 points from:

LAWS201A/B – Public Law 20 points
GEOG219A – Māori Lands and Communities 20 points or

The following papers are recommended for the Earth Science and Engineering theme:

ENCV230A – Geomechanics 10 points
ERTH221B – Materials and Processes 20 points
ERTH233A – Soils in the Landscape 10 points
ERTH234A – Soil Properties and their Management 10 points
ERTH242B – Oceanography 20 points
ERTH245A – Weather and Climate 10 points
ERTH246B – Introduction to Hydrology 10 points
ERTH284B – Introduction to Environmental Monitoring 10 points

The following papers are recommended for the Environmental Chemistry theme:

CHEM200B – Analytical Tools for Environmental Chemistry 20 points
CHEM211A – Analytical and Inorganic Chemistry 1 20 points
CHEM212B – Organic and Physical Chemistry 1 20 points
CHEM261B – Environmental Chemistry and Geochemistry 20 points

The following papers are recommended for the Environmental Biology theme:

BIOL212A – Ecology 20 points
BIOL241A – Microbiology: Form, Function and Metabolism 20 points

Year 3

ENCV340C – Advanced Fluid Mechanics & Design 20 points
ENCV350A – Engineering Modelling and Analysis 20 points
ENMP321B – Process Engineering and Design 20 points
ENMP341A – Environmental Technology 2 20 points
ENGG372C – Engineering Work Placement 2 0 points
ENGG379A – Reflection on Professional Workplace Experience 0 points
ERTH352A – Engineering Geology 10 points
***Choose 20 points from:

ECON315B – Environmental Natural Resource Economics 20 points
ENC330 – Geomechanics 2 10 points
ENGG301A/B – Special Topic in Engineering 20 points
ENMP407A/B – Materials and Processing Elective 10 points
ENVP306A – Planning in Aotearoa/New Zealand 20 points
GEOG328B – Geographic Information Systems 20 points
LAWS405B – The Treaty of Waitangi 20 points
MCOM390A – Leading Change for Sustainability 20 points
MCOM336B – Negotiation and Persuasion 20 points
SCIE301A/B – Undergraduate Research Project 20 points or
SCIE302A/B – Undergraduate Research Project 10 points

The following papers are recommended for the Earth Science and Engineering theme:

ERTH321A – Volcanology 20 points
ERTH322B – Sedimentary and Petroleum Geology 20 points
ERTH333A – Pedology and Land Evolution 10 points
ERTH334B – Soil and Land Management 10 points
ERTH344A – Coastal Oceanography and Engineering 20 points
ERTH345A – Catchment Hydrology 10 points
ERTH346B – Freshwater Resources and Hazards 10 points

The following papers are recommended for the Environmental Chemistry theme:

CHEM311B – Analytical and Inorganic Chemistry 2 20 points
CHEM312A – Organic and Physical Chemistry 20 points
CHEM361A/B – Applied Environmental Geochemistry 20 points

The following papers are recommended for the Environmental Biology theme:

BIOL312A – Applied Terrestrial Ecology 20 points
BIOL313B – Applied Freshwater Ecology 20 points
BIOL314A – Marine Biology and Monitoring 20 points
BIOL341B – Microbial Physiology and Ecology 20 points

Year 4

ENGG492A/B/C/Y – Honours Research and Management Project 60 points
ENMP422A – Environmental Technology 3 20 points
ENEV443B – Environmental Design & Management for Sustainability 10 points
****Choose 30 points from:

ENMP407A/B – Materials and Processing Elective 10 points
ENMP422A – Advanced Process Simulation and Control 20 points
GEOG538A – Automated Spatial Analysis using GIS 15 points
GEOG548B – Advanced GIS Modelling 15 points
GEOG568A – Applications of GIS 15 points
SCIE301A/B – Undergraduate Research Project 20 points or
SCIE302A/B – Undergraduate Research Project 10 points

The following papers are recommended for the Earth Science and Engineering Theme:

ENVS524A – Environmental Evaluation 15 points
ERTH524A – Volcanic Processes and Hazards 15 points
ERTH525B – Hydrothermal Mineral and Energy Systems in New Zealand 15 points
ERTH527A – Sedimentary and Petroleum Geology 15 points
ERTH528A – Quaternary: Past Environments 15 points
ERTH533B – Soil and Greenhouse Gases 15 points
ERTH535A – Land and Soil Evaluation 15 points
ERTH547B – Introduction to Hydrological Modelling 15 points
ERTH548A – Ecohydrology 15 points
ERTH552B – Rock Slope Engineering 15 points
ERTH562A – Coastal Sedimentation 15 points
ERTH563A – Coastal and Estuarine Processes 15 points
ERTH564B – Coastal Freshwater Modelling: Physical Approaches 15 points

The following papers are recommended for the Environmental Chemistry theme:

CHEM512A – Topics in Advanced Physical Chemistry 15 points
CHEM517A – Applied and Environmental Analytical Chemistry A 15 points
CHEM527A/B – Applied and Environmental Analytical Chemistry B 15 points

The following papers are recommended for the Environmental Biology theme:

BIOL560A – Freshwater Ecology 15 points
BIOL561B – Aquatic Ecosystem Modelling 15 points
BIOL563B – Aquatic Field Methods 15 points
BIOL564B – Restoration Ecology 15 points
BIOL573A – Conservation Biology 15 points

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): CHEM Chemistry; ENGG Engineering; ENMP Materials and Processing; PHYS Physics. For descriptions of papers with the subject codes COMP, MATH or STAT, refer to the Faculty of Computing & Mathematical Sciences Handbook, or the 2017 University of Waikato Calendar.
Materials and Process Engineering

This specified engineering programme contains two overlapping engineering disciplines: process engineering and materials engineering. Materials engineers make critical decisions in selecting the best materials for a particular function; process engineers make critical decisions in the processes and utilities required to manufacture the product. Examples include converting trees into paper and fibre board, iron sand into steel, effluent into drinkable water and producing solar panels for electricity.

This specified engineering programme has full IPENZ accreditation, making the Bachelor of Engineering (Honours) a nationally and internationally recognised degree.

Materials and Processing is available as a major subject for the Bachelor of Science or Bachelor of Science (Technology) degrees. See pages 63-64 for more details. Papers in materials and processing are available at all levels of study from undergraduate degrees through to postgraduate and doctoral studies. See page 113 for details of Materials and Processing papers.

Contacts for the School of Engineering

Enrolment Contact Person
and First Year Mentor
Dr Rob Torrens

Room: LSL.G.32
Phone: 07 838 4684
Email: r.torrens@waikato.ac.nz

Convenor
Associate Professor
Michael Walmsley

Room: EF.2.02
Phone: 07 838 4701
Email: walmsley@waikato.ac.nz
Programme details

| Structure of the Materials and Process Engineering Programme – BE(Hons) |
|---|---|---|---|---|---|---|---|---|---|
| YEAR 1 | ENGG180 | ENMP102 | ENGG182 | ENGG183 | ENGG184 | ENGG110 | CHEM111 | CHEM112 |
| 15 points |
YEAR 2	ENMP211	ENMP213	ENMP282	ENMP283	ENMP221	ENMP223	ENGG279	ENGG371
20 points	20 points	10 points	10 points	20 points	20 points	0 points	0 points	
YEAR 3	ENGG285	ENMP214	ENMP311	ENMP313	ENMP321	ENMP323	ENGG372	ENGG379
10 points	10 points	20 points	20 points	20 points	20 points	0 points	0 points	
YEAR 4	ENMP411	ENGG381	ENMP422	DESIGN PROJECT ENNG492	10 points	20 points	20 points	60 points

- **Work Placement** – Work experience in an appropriate and approved industry or applied field (0 points).
- **Design Project** – A major design project (60 points) is undertaken in Year 4.

Year 1

- **CHEM111A** – Structure and Spectroscopy 15 points
- **CHEM112B** – Chemical Reactivity 15 points
- **ENGG110B** – Engineering Mechanics 15 points
- **ENGG180A** – Foundations of Engineering 15 points
- **ENGG182A/B** – Engineering Computing 15 points
- **ENGG183A/B** – Linear Algebra and Statistics for Engineers 15 points
- **ENGG184A/B/S** – Calculus for Engineers 15 points
- **ENMP102B** – Introduction to Materials Science and Engineering 15 points

Year 2

- **ENGG279B** – Preparation for the Professional Workplace 0 points
- **ENGG282B** – Engineering Design 10 points
- **ENGG283A** – Linear Algebra for Engineers 10 points
- **ENGG284B** – Differential Equations for Engineers 10 points
- **ENGG371C** – Engineering Work Placement 10 points
- **ENMP211A** – Materials 1 20 points
- **ENMP213B** – Mechanics of Materials 1 20 points
- **ENMP221A** – Engineering Thermodynamics 20 points
- **ENMP223B** – Thermofluids 20 points
- **ENMP282A** – Science and Engineering Management A 10 points
Year 3

ENGG285A – Multivariable Calculus for Engineers 10 points
ENGG287A – Engineering Applications 10 points
ENGG372C – Engineering Work Placement 0 points
ENGG379A – Reflection on Professional Workplace Experience 0 points
ENMP214B – Manufacturing Processes 10 points
ENMP215B – Manufacturing Technology 10 points
ENMP311B – Materials 20 points
ENMP313A – Mechanics of Materials 20 points
ENMP321B – Process Engineering and Design 20 points
ENMP323A – Transport Processes and Unit Operations 20 points

Year 4

ENGG381A – Engineering Statistics 20 points
ENGG492A/B/C/Y – Honours Research and Management Project 60 points
ENMP411A – Advanced Materials Engineering 10 points
ENMP422A – Advanced Process Simulation and Control 20 points

*Choose a further 10 points from papers at 200 level or above.

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): CHEM Chemistry; ENEL Electronics; ENGG Engineering; ENMP Materials and Processing; PHYS Physics. For descriptions of papers with subject codes COMP, MATH or STAT, refer to the Faculty of Computing & Mathematical Sciences Handbook or the 2017 University of Waikato Calendar.
Mechanical Engineering

The Mechanical Engineering programme combines papers in mechanical engineering, general engineering, science and mathematics, to give graduates a good balance between intellectual rigour and engineering practice.

This prepares graduates typically for employment in industry and a wide range of other careers. During the first three years, the curriculum includes engineering design as a major theme. In the final year, students undertake a major design project.

This specified engineering programme has full IPENZ accreditation, making the Bachelor of Engineering (Honours) a nationally and internationally recognised degree.

Contacts for the School of Engineering

<table>
<thead>
<tr>
<th>Enrolment Contact Person</th>
<th>Room: LSL.G.32</th>
</tr>
</thead>
<tbody>
<tr>
<td>and First Year Mentor</td>
<td>Phone: 07 838 4684</td>
</tr>
<tr>
<td>Dr Rob Torrens</td>
<td>Email: r.torrens@waikato.ac.nz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convenor</th>
<th>Room: EF.2.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td>Phone: 07 838 4522</td>
</tr>
<tr>
<td>Mike Duke</td>
<td>Email: dukemd@waikato.ac.nz</td>
</tr>
</tbody>
</table>
Programme details

Structure of the Mechanical Engineering Programme

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th>ENGG180</th>
<th>ENMP102</th>
<th>ENGG182</th>
<th>ENGG183</th>
<th>ENGG184</th>
<th>ENGG110</th>
<th>ENEL111</th>
<th>CHEM1XX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 2</th>
<th>ENMP211</th>
<th>ENMP213</th>
<th>ENGG282</th>
<th>ENGG283</th>
<th>ENMP221</th>
<th>ENMP214</th>
<th>ENMP215</th>
<th>ENGG279</th>
<th>ENGG371</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 points</td>
<td>10 points</td>
<td>10 points</td>
<td>10 points</td>
<td>10 points</td>
<td>10 points</td>
<td>10 points</td>
<td>0 points</td>
<td>0 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 3</th>
<th>ENGG285</th>
<th>ENMP223</th>
<th>ENME351</th>
<th>ENME352</th>
<th>ENME380</th>
<th>ENMP313</th>
<th>ENGG372</th>
<th>ENGG379</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>10 points</td>
<td>0 points</td>
<td>0 points</td>
</tr>
</tbody>
</table>

YEAR 4	ENME480	ENGG381	ENMP314	*	DESIGN PROJECT
--------	---------	---------	---------		ENGG492
	10 points	20 points	10 points	20 points	60 points

- **Work Placement** – Work experience in an appropriate and approved industry or applied field (0 points).
- **Design Project** – A major design project (60 points) is undertaken in Year 4.

Year 1

- **CHEM100A** – Chemistry in Context 15 points or
- **CHEM111A** – Structure and Spectroscopy 15 points or
- **CHEM112B** – Chemical Reactivity 15 points

- **ENEL111A/T** – Introduction to Electronics (A and T Semesters) 15 points
- **ENGG110B** – Engineering Mechanics 15 points
- **ENGG180A** – Foundations of Engineering 15 points
- **ENGG182A/B** – Engineering Computing 15 points
- **ENGG183A/B** – Linear Algebra and Statistics for Engineers 15 points
- **ENGG184A/B/S** – Calculus for Engineers 15 points
- **ENMP102B** – Introduction to Materials Science and Engineering 15 points
Year 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG279B</td>
<td>Preparation for the Professional Workplace</td>
<td>0</td>
</tr>
<tr>
<td>ENGG282B</td>
<td>Engineering Design</td>
<td>10</td>
</tr>
<tr>
<td>ENGG283A</td>
<td>Linear Algebra for Engineers</td>
<td>10</td>
</tr>
<tr>
<td>ENGG284B</td>
<td>Differential Equations for Engineers</td>
<td>10</td>
</tr>
<tr>
<td>ENGG371C</td>
<td>Engineering Work Placement</td>
<td>10</td>
</tr>
<tr>
<td>ENMP211A</td>
<td>Materials</td>
<td>20</td>
</tr>
<tr>
<td>ENMP213B</td>
<td>Mechanics of Materials 1</td>
<td></td>
</tr>
<tr>
<td>ENMP214B</td>
<td>Manufacturing Processes</td>
<td>10</td>
</tr>
<tr>
<td>ENMP215B</td>
<td>Manufacturing Technology</td>
<td>10</td>
</tr>
<tr>
<td>ENMP221A</td>
<td>Engineering Thermodynamics</td>
<td>20</td>
</tr>
<tr>
<td>ENMP282A</td>
<td>Science and Engineering Management A</td>
<td>10</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG285A</td>
<td>Multivariable Calculus for Engineers</td>
<td>10</td>
</tr>
<tr>
<td>ENGG287A</td>
<td>Engineering Applications</td>
<td>10</td>
</tr>
<tr>
<td>ENGG372C</td>
<td>Engineering Work Placement 2</td>
<td>20</td>
</tr>
<tr>
<td>ENGG379A</td>
<td>Reflection on Professional Workplace Experience</td>
<td>0</td>
</tr>
<tr>
<td>ENME351A</td>
<td>Dynamics and Mechanisms</td>
<td>20</td>
</tr>
<tr>
<td>ENME352B</td>
<td>Machine Dynamics and Control</td>
<td>20</td>
</tr>
<tr>
<td>ENME380B</td>
<td>Mechanical Engineering Design</td>
<td>20</td>
</tr>
<tr>
<td>ENMP223B</td>
<td>Thermofluids</td>
<td>20</td>
</tr>
<tr>
<td>ENMP313A</td>
<td>Mechanics of Materials 2</td>
<td>20</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG492A/B/C/Y</td>
<td>Honours Research and Management Project</td>
<td>60</td>
</tr>
<tr>
<td>ENGG381A</td>
<td>Engineering Statistics</td>
<td>20</td>
</tr>
<tr>
<td>ENME480A</td>
<td>Advanced Product Development</td>
<td>10</td>
</tr>
</tbody>
</table>

*Choose a further 30 points from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG301A/B/C/Y</td>
<td>Special Topics in Engineering</td>
<td>20</td>
</tr>
<tr>
<td>ENME440A</td>
<td>Finite Element Analysis and Applications</td>
<td>20</td>
</tr>
<tr>
<td>ENME451B</td>
<td>Mechanics of Vibration</td>
<td>10</td>
</tr>
<tr>
<td>ENMP311B</td>
<td>Materials 2</td>
<td>20</td>
</tr>
<tr>
<td>ENMP407A/B</td>
<td>Materials and Process Engineering Elective</td>
<td>10</td>
</tr>
<tr>
<td>ENMP413B</td>
<td>Materials Performance in Service</td>
<td>10</td>
</tr>
<tr>
<td>ENMP422A</td>
<td>Advanced Process Simulation and Control</td>
<td>20</td>
</tr>
</tbody>
</table>

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): CHEM Chemistry; ENEL Electronics; ENGG Engineering; ENMP and ENME Materials and Processing; PHYS Physics. For descriptions of papers with subject codes COMP or MATH, refer to the Faculty of Computing & Mathematical Sciences Handbook or the 2017 University of Waikato Calendar.
Software Engineering

Software Engineers design the software that we increasingly rely on. Industrial robots, mobile phones, cars, trains, planes, DVD players, washing machines, computer games, energy networks, security systems – all these are driven by software that must be reliable and flexible, usable and cost-effective.

The Software Engineering starts with programming and basic engineering ideas in the first year, progresses through more advanced design and programming techniques in the second year, then branches out into a wide variety of design and implementation challenges in the third and fourth years.

This specified engineering programme has full IPENZ accreditation, making the Bachelor of Engineering (Honours) a nationally and internationally recognised degree.

Contacts for Software Engineering

Software Engineering is administered by the Faculty of Computing & Mathematical Sciences.

<table>
<thead>
<tr>
<th>Faculty of Computing & Mathematical Sciences</th>
<th>Phone: 07 838 4322</th>
<th>Email: cms@waikato.ac.nz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convenor</td>
<td>Room: G.1.26</td>
<td></td>
</tr>
<tr>
<td>Professor Steve Reeves</td>
<td>Phone: 07 838 4398</td>
<td>Email: stever@cs.waikato.ac.nz</td>
</tr>
</tbody>
</table>
Programme details

General structure of the Software Engineering Programme

<table>
<thead>
<tr>
<th>Year 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMP103</td>
<td>COMP104</td>
<td>ENGG183</td>
<td>ENGG184</td>
<td>ENGG180</td>
<td>ENMP102</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>COMP241</td>
<td>COMP219</td>
<td>ENMP282</td>
<td>COMP235</td>
<td>COMP242</td>
<td>ENGG282</td>
<td>ENGG282</td>
<td>ENGG279</td>
<td>ENGG371</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Points</td>
<td>20 points</td>
<td>10 points</td>
<td>20 points</td>
<td>10 points</td>
<td>10 points</td>
<td>10 points</td>
<td>0 points</td>
<td>0 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>COMP314</td>
<td>COMP317</td>
<td>COMP340</td>
<td>COMP325</td>
<td>ENGG381</td>
<td>One of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>COMP301</td>
<td>COMP312</td>
<td>COMP313</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>A least one of:</td>
<td>At least one of:</td>
<td>COMP4XX</td>
<td>COMP4XX</td>
<td>DESIGN PROJECT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMP349 COMP439</td>
<td>COMP452 COMP454</td>
<td>***</td>
<td>***</td>
<td>ENGG492</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 points (if needed)</td>
<td>15 points (if needed)</td>
<td>15 points</td>
<td>15 points</td>
<td>60 points</td>
<td></td>
</tr>
</tbody>
</table>

- **Work Placement** – Work experience in an appropriate and approved industry or applied field (0 points).
- **Design Project** – A major design project (60 points) is undertaken in Year 4.

Year 1

- COMP103A/B – Introduction to Computer Science 1 15 points
- COMP104B/S – Introduction to Computer Science 2 15 points
- ENGG180A – Foundations of Engineering 15 points
- ENGG183A/B – Linear Algebra and Statistics for Engineers 15 points
- ENGG184A/B/S – Calculus for Engineers 15 points
- ENMP102B – Introduction to Materials Science and Engineering 15 points

*Choose a further 30 points from:

- CHEM100A – Chemistry in Context 15 points or
- CHEM111A – Structure and Spectroscopy 15 points or
- CHEM112B – Chemical Reactivity 15 points
- ENEL111A/T – Introduction to Electronics 15 points
- PHYS103B – Physics for Scientists and Engineers 1 15 points
Year 2

COMP200A – Computer Systems 10 points
COMP202B – Computer Communications 10 points
COMP219A – Database Practice and Experience
COMP235B – Logic and Computation 20 points
COMP241A – Software Engineering Development 10 points
COMP242B – Software Engineering Process 10 points
ENGG279B – Preparation for Professional Workplace 0 points
ENGG282B – Engineering Design 10 points
ENGG283A – Linear Algebra for Engineers 10 points
ENGG284B – Differential Equations for Engineers 10 points
ENGG371C – Engineering Work Placement 10 points
ENMP282A – Science and Technology Management 10 points

Year 3

COMP314B – Software Engineering Project 20 points
COMP317A – Design and Analysis of Algorithms 20 points
COMP325B – Human-Computer Interaction 20 points
COMP340A – Reasoning about Programs 20 points
ENGG372C – Engineering Work Placement 20 points
ENGG379A – Reflection on Professional Workplace Experience 0 points
ENGG381A – Engineering Statistics 20 points or
COMP321B – Practical Data Mining 20 points

**Choose a further 20 points from:

COMP301B – Operating Systems 20 points
COMP312A – Communications and Systems Software 20 points
COMP313A – Topics in Programming Languages 20 points
Year 4

ENGG492A/B/C/Y – Honours Research and Management Project 60 points

Choose at least one of:

COMP424A – Topics in Interaction Design 15 points
COMP439A – Usability Engineering 15 points
COMP448A – Developing Mobile Applications 15 points

Choose at least one of:

COMP426A – Engineering Interactive Systems 15 points
COMP452A – Model Checking 15 points

***Choose from the Computer Science papers listed below. Together with the papers above, you must take a total of 120 points of 400 level Computer Science papers.

Recommended:

COMP401A – Topics in Operating Systems 15 points
COMP413A – Topics in Computer Networks 15 points
COMP414B – Carrier and ISP Networks 15 points
COMP440B – Software Engineering Methodologies 15 points
COMP453A – Extremely Parallel Programming 15 points
COMP454B – Specification Languages and Models 15 points

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): CHEM Chemistry; ENEL Electronics; ENGG Engineering; ENMP Materials and Processing; PHYS Physics. For descriptions of papers with subject codes COMP, MATH or STAT, refer to the Faculty of Computing & Mathematical Sciences Handbook or the 2017 University of Waikato Calendar.
Bachelor of Science BSc

The Bachelor of Science (BSc) is an internationally-recognised general science degree. Graduates are eagerly sought by industry and public bodies in New Zealand and overseas. The BSc allows wide flexibility in the choice of the papers students can take, allowing you to combine papers to suit your strengths and abilities. You can construct a general degree and major in the subject of your choice, or choose to complete a specialisation within that major.

Degree length
The BSc requires three years of full-time study or the equivalent in part-time study.

Requirements

- 360 points at 100, 200 and 300 levels (equivalent to three years full-time study),
- No more than 120 points at 100 level,
- 105 points at 100 level must be in science, of which 60 points must be across four different Science subjects,
- A minimum of 80 points at 300 level,
- Satisfy the requirements for a major subject (see below),
- A maximum of 75 points may be taken outside Science (unless taking a double major), and
- At least 40 points at 200 level or higher outside the major subject.

Majors

To meet the requirements of a major, you must pass at least 120 points above 100 level in that subject, including 60 points above 200 level. The same number of points in a second subject must be passed if you elect to pursue a double major. The major subjects for the degree are:

Animal Behaviour page 41
Biochemistry page 44
Biological Sciences page 46
Biotechnology page 48
Chemistry page 51
Earth Sciences page 54
Electronics page 56
Environmental Sciences page 58
Materials and Processing page 62
Psychology page 65
Programme details

<table>
<thead>
<tr>
<th>Year</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 level</td>
</tr>
<tr>
<td>2</td>
<td>200 level</td>
<td>200 level</td>
<td>200 level</td>
<td>200 level</td>
<td>Elective</td>
<td>Elective</td>
<td>200 level</td>
</tr>
<tr>
<td>3</td>
<td>300 level</td>
<td>300 level</td>
<td>300 level</td>
<td>300 level</td>
<td>Science Major</td>
<td>Science Major</td>
<td>200 or 300 level</td>
</tr>
</tbody>
</table>

Science Major

Science – These papers should be recognised science papers, which are all papers offered by the Faculties of Science & Engineering and Computing & Mathematical Sciences (except MATH168), and selected philosophy and psychology papers. A list of all recognised 100 level science papers can be found on page 77 of this handbook.

Elective – These papers may be chosen from science or non-science papers.

BSc degree student planner

<table>
<thead>
<tr>
<th>Year</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Science Major

Science – These papers should be recognised science papers, which are all papers offered by the Faculties of Science & Engineering and Computing & Mathematical Sciences (except MATH168), and selected philosophy and psychology papers. A list of all recognised 100 level science papers can be found on page 77 of this handbook.

Elective – These papers may be chosen from science or non-science papers.
Bachelor of Science (Technology) BSc(Tech)

A BSc(Tech) puts you on the first step of the career ladder, giving you valuable paid work experience alongside practicing scientists and technologists. Our Cooperative Education Unit arranges and oversees the Work placement component of your degree, which will ensure the quality of your Work placement.

The contacts made and the experience gained means that graduates are very successful in finding jobs within a few months of completing this degree; many in the company where they completed their work experience. Research has shown that BSc(Tech) graduates who had been actively seeking employment have an extremely high success rate of finding paid employment within six months of finishing their degree.

Degree length

The BSc(Tech) requires four years of full-time study or the equivalent in part-time study. The work experience component of the degree is offered in two blocks. The first block occurs at the end of your second year during the summer vacation and consists of three months of paid work with associated assessment items during the placement. The second block generally occurs at the end of the third year and consists of six to nine months (November to July) of work experience.

Requirements

- 480 points at 100, 200 and 300 levels (equivalent to four years full-time study),
- No more than 120 points at 100 level,
- 105 points at 100 level must be in Science, of which 60 points must be across four different Science subjects,
- A minimum of 80 points at 300 level (not including placement papers),
- Satisfy the requirements for a major subject (see page 27),
- At least 40 points at 200 level or higher outside the major subject,
- A minimum of 35 points from Management papers,
- 80 points of Work placement-related papers, of which 60 points must be at 300 level, and
- A maximum of 120 points can be taken outside Science including the Management papers (unless taking a double major).

BSc(Tech) Work placement papers

Work placement papers are a compulsory component of the BSc(Tech). Please refer to page 131 for details of BSc(Tech) Work placement papers.

Refer to page 75 for contact details of Work placement co-ordinators.
Majors

To meet the requirements of a major, you must pass at least 120 points above 100 level in that subject, including 60 points above 200 level. The same number of papers in a second subject must be passed if you elect to pursue a double major. The major subjects for the degree are:

- Animal Behaviour
- Biochemistry
- Biological Sciences
- Biotechnology
- Chemistry
- Computer Science
- Earth Sciences
- Electronics
- Environmental Sciences
- Materials and Processing

*Enrolment in this major should be completed in consultation with the Faculty of Computing & Mathematical Sciences.

General structure of the BSc(Tech) degree

<table>
<thead>
<tr>
<th>YEAR</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 level</td>
</tr>
<tr>
<td>2</td>
<td>200 level</td>
</tr>
<tr>
<td>3</td>
<td>300 level</td>
</tr>
<tr>
<td>4</td>
<td>200 or 300 level</td>
</tr>
</tbody>
</table>

Science Major

Science – These papers should be recognised science papers, which are all papers offered by the Faculties of Science & Engineering and Computing & Mathematical Sciences (except MATH168), and selected philosophy and psychology papers. A list of all recognised 100 level science papers can be found on page 77 of this handbook.

Elective – These papers may be chosen from science or non-science papers.

Management – Recommended Management papers:
**ENMP282 (10 pts) and ENMP283 (10 pts)
***ENMP381 (20 pts)

*Applies to students who enrol from 2010 onwards. Students enrolled in previous years should refer to the handbook from their year of enrolment.
Animal Behaviour

Animal behaviour is the study of behaviour patterns in animals (including humans), and of how the behaviour of individuals helps to determine the density and distribution of populations. Knowledge of animal behaviour is of increasing importance in areas such as evolutionary biology, conservation, and the efficient and humane management of farm animals.

Graduates in animal behaviour will be able to use both biological and psychological approaches to address issues in the fields of animal conservation, wildlife management, animal welfare and the fundamental study of behaviour. They will find employment in the behavioural sciences at local, national and international levels in the agricultural, conservation, and animal management industries.

Contacts for Animal Behaviour

This subject is jointly taught between Biological Sciences and Psychology

Convenor: Room: R.2.26
Dr Clare Browne Phone: 07 838 9394
Email: cbrowne@waikato.ac.nz

Animal Behaviour Interdisciplinary major

<table>
<thead>
<tr>
<th>Level</th>
<th>Course</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 level</td>
<td>BIOL102</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>PSYC103</td>
<td>15 points</td>
</tr>
<tr>
<td>200 level</td>
<td>BIOL234</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>BIOL200</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>PSYC225</td>
<td>10 points</td>
</tr>
<tr>
<td></td>
<td>PSYC226 or PSYC227</td>
<td></td>
</tr>
<tr>
<td>300 level</td>
<td>BIOL333</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>BIOL338</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>PSYC314</td>
<td>20 points</td>
</tr>
</tbody>
</table>

100 level – Prerequisites: BIOL102 The Biology of Organisms, and PSYC103 General and Experimental Psychology.

Specialisations

Students may undertake the following specialisations for the BSc and BSc(Tech) major in Animal Behaviour.

Science International \hspace{10cm} page 68
Te Pūtaiao me ngā take Māori \hspace{10cm} page 71
Choosing papers

Animal Behaviour Interdisciplinary Major

To complete a major in Animal Behaviour, students must complete 120 points above 100 level, including 60 points at 300 level, from compulsory papers.

Please note that the paper PSYC307 Research Methods is a prerequisite for many Psychology graduate papers.

100 level

Prerequisites

BIOL102A – The Biology of Organisms 15 points
PSYC103A – General and Experimental Psychology 15 points

Students are strongly advised to include the following paper
BIOL101B – Cellular and Molecular Biology 15 points

Highly recommended papers

CHEM100A – Chemistry in Context 15 points or
CHEM111A – Structure and Spectroscopy 15 points

COMP123A/B/S – The Computing Experience 15 points

ENVS101B – Environmental Science 15 points

MATH165A/B – General Mathematics 15 points

STAT111B – Statistics for Science 15 points or
STAT121A/S – Introduction to Statistical Methods 15 points

200 level

Compulsory papers

BIOL234A – Functional Animal Biology 20 points
BIOL200B – Behavioural Ecology and Conservation 20 points
PSYC225A – Behavioural Psychology and Learning 10 points

Choose one of:

PSYC226A – The Psychology of Perception 10 points
PSYC227A – Foundations of Behavioural Neuroscience 10 points
Highly recommended papers

BIOL201A – Evolution and Diversity of Life* 20 points
BIOL210B – Introduction to Genetics 20 points
BIOL212A – Ecology 20 points
BIOL235B – Biomedical and Molecular Physiology 20 points
PSYC208B – Psychological Research: Analysis, Design and Measurement 20 points
(prerequisite for students enrolling in PSYC307)

300 level

Compulsory papers

BIOL333B – Advanced Animal Behaviour 20 points
BIOL338B – Advanced Zoology* 20 points
PSYC314B – Behaviour Analysis 20 points

Highly recommended papers

PSYC307A – Research Methods 20 points
PSYC340A – Applied Cognitive Psychology 10 points
PSYC341B – Visual Neuroscience and its Applications 10 points
PSYC344A – Physiology of Human Potential and Development 10 points
BIOL310A – Advanced Genetics 20 points
BIOL312A – Applied Terrestrial Ecology 20 points
BIOL313B – Applied Freshwater Ecology 20 points
BIOL314A – Marine Biology and Monitoring 20 points
BIOL335A – Mammalian Physiology 20 points

*Please note that BIOL201 is one of the prerequisites for BIOL338, and it is strongly recommended that you take this paper.

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): BIOL Biological Sciences; CHEM Chemistry; ENVS Environmental Sciences; PSYC Psychology. For descriptions of papers with subject codes COMP, MATH or STAT, refer to the Faculty of Computing & Mathematical Sciences Handbook or the 2017 University of Waikato Calendar. For descriptions of papers with the subject code PHIL refer to the Faculty of Arts & Social Sciences Undergraduate Handbook or the 2017 University of Waikato Calendar.
Biochemistry

Biochemistry is the explanation of life in chemical terms. It involves the study of proteins, lipids, carbohydrates and nucleic acids which are the fundamental molecules of life.

Biochemists try to understand how these molecules interact in living organisms, in health and disease. Biochemistry is one of the fastest growing areas of modern science. By taking a combination of papers from both biological sciences and chemistry, students will gain a solid grounding in the molecular and chemical principles underlying biochemistry.

Contacts for Biochemistry

This interdisciplinary major is jointly taught between Biological Sciences and Chemistry.

Convenor: Dr Ryan D Martinus
Room: E.3.08
Phone: 07 838 4375
Email: r.martinus@waikato.ac.nz

Biochemistry Interdisciplinary major

General structure of a Biochemistry Interdisciplinary Major for the BSc and BSc(Tech) degrees

100 level
- BIOL101 15 points
- CHEM112 15 points

100 level – Recommended prerequisites: BIOL101 Cellular and Molecular Biology, and CHEM112 Chemical Reactivity

200 level
- BIOL210 20 points
- BIOL251 20 points
- CHEM212 20 points

200 level – BIOL210 Introduction to Genetics, BIOL251 Biochemistry, CHEM212 Organic and Physical Chemistry 1.

300 level
- BIOL310 20 points
- BIOL351 20 points
- CHEM312 20 points

300 level – BIOL310 Advanced Genetics, BIOL351 Advanced Biochemistry, CHEM312 Organic and Physical Chemistry 2.

Specialisations

Students may undertake the following specialisations for the BSc and BSc(Tech) major in Biochemistry.

Science International
Te Pūtaiao me ngā take Māori
Choosing papers

Biochemistry Interdisciplinary Major

To complete a major in Biochemistry, students must complete 120 points above 100 level, including 60 points at 300 level, from compulsory papers.

100 level

Prerequisites

BIOL101B – Cellular and Molecular Biology 15 points
CHEM112B – Chemical Reactivity 15 points

Students are strongly advised to include the following papers:

BIOL102A – The Biology of Organisms 15 points
CHEM111A – Structure and Spectroscopy 15 points
STAT111B – Statistics for Science 15 points or
STAT121A/S – Introduction to Statistical Methods 15 points

200 level

Compulsory papers

BIOL210B – Introduction to Genetics 20 points
BIOL251A – Biochemistry 20 points
CHEM212B – Organic and Physical Chemistry 1 20 points

Students are strongly advised to include the following paper:

CHEM211A – Analytical and Inorganic Chemistry 1 20 points

300 level

Compulsory papers

BIOL310A – Advanced Genetics 20 points
BIOL351B – Advanced Biochemistry 20 points
CHEM312A – Organic and Physical Chemistry 2 20 points

Students are strongly advised to include the following papers:

BIOL362C – Molecular Biology and Biotechniques 20 points
CHEM311B – Analytical and Inorganic Chemistry 2 20 points

The remaining papers needed to complete the requirements for the BSc and BSc(Tech) degrees may come from other science subjects or papers from other faculties or schools.

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): BIOL Biological Sciences; CHEM Chemistry. For descriptions of papers with subject codes COMP, MATH or STATS, refer to the Faculty of Computing & Mathematical Sciences Handbook or the 2017 University of Waikato Calendar.
Biological Sciences

The study of Biological Sciences is for those who love life. Whether you want to stand in a metre of mud, on top of a tree, under the sea or on a kilometre of Antarctic ice, biology is for you. Our students have many opportunities; they can be ecologists with interests in ecosystems, physiologists aiming to understand how organisms function, or geneticists using DNA as the key to identifying diseases of organisms.

With biology as a great start to their career, our graduates have secured positions around the world, testimony to the international standing of our degrees.

Biological Sciences covers a wide range of specialist areas including animal behaviour, biochemistry, botany, ecology, genetics, marine biology, microbiology, physiology and zoology.

Contacts for Biological Sciences

<table>
<thead>
<tr>
<th>Convenor</th>
<th>Room:</th>
<th>Phone:</th>
<th>Email:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Michael Clearwater</td>
<td>D.1.05A</td>
<td>07 838 4613</td>
<td>mclearw@waikato.ac.nz</td>
</tr>
<tr>
<td>(Ecology and Evolution)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convenor</th>
<th>Room:</th>
<th>Phone:</th>
<th>Email:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Steven Bird</td>
<td>C.2.01C</td>
<td>07 838 4723</td>
<td>sbird@waikato.ac.nz</td>
</tr>
<tr>
<td>(Biomedical and Genetics)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year Mentor</th>
<th>Room:</th>
<th>Phone:</th>
<th>Email:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Brydget Tulloch</td>
<td>R.1.06</td>
<td>07 838 6542</td>
<td>btulloch@waikato.ac.nz</td>
</tr>
</tbody>
</table>

Biological Sciences major

General structure of a Biological Sciences Major for the BSc and BSc(Tech) degrees

<table>
<thead>
<tr>
<th>Level</th>
<th>Course Code</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 LEVEL</td>
<td>BIOL101</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>BIOL102</td>
<td>15</td>
</tr>
<tr>
<td>200 LEVEL</td>
<td>BIOL2XX</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>BIOL2XX</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>BIOL2XX</td>
<td>20</td>
</tr>
<tr>
<td>300 LEVEL</td>
<td>BIOL3XX</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>BIOL3XX</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>BIOL3XX</td>
<td>20</td>
</tr>
</tbody>
</table>

100 level – Prerequisites: BIOL101 Cellular and Molecular Biology and BIOL102 The Biology of Organisms.

200 level – At least 60 points at 200 level Biological Sciences.

300 level – At least 60 points at 300 level Biological Sciences.
Choosing papers

Entry into Biological Sciences papers

Satisfactory completion of secondary study at level 3 or higher on the NZQA framework in a relevant area is acceptable for admission to Biological Sciences papers. Students who do not have credits in NCEA level 3 Biology are advised to discuss their options with the first-year student mentor.

The bridging biology classes provide the prior knowledge required for studying first-year papers in Biology. Information on bridging options may be found in the Bridging Programme section.

In some cases, we are able to relax the rules relating to prerequisites. If you would particularly like to take a paper for which you have not satisfied a specified requirement, talk to the paper Co-ordinator.

Specialisations

Students may undertake the following specialisation for the BSc and BSc(Tech) major in Biological Sciences.

Restoration Ecology

Restoration ecology is the study of restoring degraded, damaged or destroyed ecosystems through active human intervention. This specialisation is for students who wish to develop a career focussed on ecological restoration or conservation biology. With some 3,000 community-based restoration projects currently being undertaken in New Zealand, there is strong demand for graduates able to address key issues of this field.

Biological Sciences major

To complete a major in Biological Sciences, students must complete 120 points above 100 level, including 60 points at 300 level from Biological Sciences papers.

100 level

Students wishing to major in Biological Sciences or a related field should take the two core papers:

Prerequisites

BIOL101B – Cellular and Molecular Biology 15 points
BIOL102A – The Biology of Organisms 15 points

You should also refer to the specialisations and general programmes that have been designed to allow Biological Sciences majors to develop themes in particular areas.

200 level

Students intending to major in Biological Sciences are required to take at least 60 points from 200 level Biological Sciences papers. Again, the specialisations and general programmes provide a good guide for students interested in particular areas.

300 level

Students intending to major in Biological Sciences must also gain at least 60 points at 300 level from the Biological Sciences papers offered.

The remaining papers needed to complete the requirements for the BSc and BSc(Tech) degrees may come from other science subjects or papers from other faculties or schools.

Refer to page 85 for Biological Sciences paper descriptions.
Biotechnology

Biotechnology is the application of science and engineering to develop useful products from biological materials. Biotechnology is a very broad discipline, ranging from cloning to cheese making, and producing products from antibiotics to beer.

This programme examines extraction, recovery, and purification of biochemicals from the meat, dairy, and other industries. It explores technological applications at the industrial level as well as the molecular level.

Contacts for Biotechnology

Biotechnology is jointly taught between Biological Sciences and Engineering.

Convenor Room: E.2.07
Professor Janis Swan Phone: 07 838 4049
Email: j.swan@waikato.ac.nz

Biotechnology Interdisciplinary major

<table>
<thead>
<tr>
<th>General structure of a Biotechnology Interdisciplinary Major for the BSc and BSc(Tech) degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 LEVEL</td>
</tr>
<tr>
<td>BIOL101</td>
</tr>
<tr>
<td>15 Points</td>
</tr>
<tr>
<td>100 level – Recommended prerequisites: BIOL101 Cellular and Molecular Biology, CHEM112 Chemical Reactivity, and one of: ENGG180 Foundations of Engineering or ENMP102 Introduction to Materials Science and Engineering.</td>
</tr>
<tr>
<td>200 level – *Choose from: BIOL241 Microbiology: Form, Function and Metabolism, BIOL251 Biochemistry, ENMP221 Engineering Thermodynamics, and ENMP222 Biotechnology: Food and Bioresources.</td>
</tr>
<tr>
<td>300 level – **Choose from: BIOL341 Microbial Physiology and Ecology, BIOL351 Advanced Biochemistry, ENMP321 Process Engineering and Design, and ENMP322 Biotechnology.</td>
</tr>
</tbody>
</table>

100 level – Recommended prerequisites: BIOL101 Cellular and Molecular Biology, CHEM112 Chemical Reactivity, and one of: ENGG180 Foundations of Engineering or ENMP102 Introduction to Materials Science and Engineering.

200 level – *Choose from: BIOL241 Microbiology: Form, Function and Metabolism, BIOL251 Biochemistry, ENMP221 Engineering Thermodynamics, and ENMP222 Biotechnology: Food and Bioresources.

300 level – **Choose from: BIOL341 Microbial Physiology and Ecology, BIOL351 Advanced Biochemistry, ENMP321 Process Engineering and Design, and ENMP322 Biotechnology.
Choosing papers
Biotechnology interdisciplinary major

To complete a major in Biotechnology, students must complete 120 points above 100 level, including 60 points at 300 level, from the following papers.

100 level

Prerequisites

- **BIOL101B – Cellular and Molecular Biology** 15 points
- **CHEM112B – Chemical Reactivity** 15 points

And at least one of:

- **ENGG180A – Foundations of Engineering** 15 points
- **ENMP102B – Introduction to Materials Science and Engineering** 15 points

Students are strongly advised to include some of the following papers

- **BIOL102A – The Biology of Organisms** 15 points
- **CHEM111A – Structure and Spectroscopy** 15 points
- **MATH101A/B/S – Introduction to Calculus** 15 points or
- **MATH102A/B – Introduction to Algebra** 15 points
- **MATH165A/B – General Mathematics** 15 points
- **STAT111B – Statistics for Science** 15 points or
- **STAT121A/S – Introduction to Statistical Methods** 15 points

200 level

*Choose 60 points from:

- **BIOL241A – Microbiology: Form, Function and Metabolism** 20 points
- **BIOL251A – Biochemistry** 20 points
- **ENMP221A – Engineering Thermodynamics** 20 points
- **ENMP222B – Biotechnology: Food and Bioresources** 20 points

Recommended papers

- **BIOL210B – Introduction to Genetics** 20 points
- **ENMP241B – Environmental Technology** 120 points
300 level

*Choose 60 points from:

- **BIOL341B – Microbial Physiology and Ecology** 20 points
- **BIOL351B – Advanced Biochemistry** 20 points
- **ENMP321B – Process Engineering and Design** 20 points
- **ENMP322B – Biotechnology** 20 points

Recommended papers

- **BIOL362C – Molecular Biology and Biotechniques** 20 points
- **ENMP341A – Environmental Technology 2** 20 points

The remaining papers needed to complete the requirements for the BSc and BSc(Tech) degrees may come from other science subjects or papers from other faculties or schools.

Note(s): For descriptions of individual papers refer to the following paper codes in the papers section (page 81): BIOL Biological Sciences; CHEM Chemistry; ENGG Engineering; ENMP Materials and Processing. For descriptions of papers with subject codes COMP, MATH or STATS, refer to the Faculty of Computing & Mathematical Sciences Handbook or the 2017 University of Waikato Calendar.
Chemistry

Chemistry is the central science and is an integral part of the study required for biochemistry, environmental sciences, earth sciences, biological sciences and more. At Waikato University we pride ourselves on the quality and extent of the practical experience that our students receive while studying.

As a result our graduates are sought after for both their hands-on bench and modern instrumentation skills and their theoretical excellence. Waikato chemistry graduates can expect to find employment in fields ranging from food technology to environmental monitoring.

Knowledge of basic chemical principles is important in all branches of science and for a wide range of industries. Better building materials and textiles, improved medical aids, new alloys, more productive agriculture, better environmental control – all rely on chemical expertise. The basic understanding of how substances are interrelated and transformed provides the framework upon which the other observational sciences are built. The School of Science covers a wide range of specialist areas including the interface between chemistry and the other sciences, such as analytical chemistry, geochemistry, environmental chemistry, forensic science, industrial chemistry, materials chemistry and biochemistry. Chemistry forms a major growth area in modern science for both research and employment.

Contacts for Chemistry

<table>
<thead>
<tr>
<th>School of Science Office</th>
<th>Room: E.2.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: 07 838 4027</td>
<td></td>
</tr>
<tr>
<td>Email: chemistry@waikato.ac.nz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undergraduate Convenor</th>
<th>Room: E.3.19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td>Phone: 07 838 4384</td>
</tr>
<tr>
<td>Merilyn Manley-Harris</td>
<td>Email: manleyha@waikato.ac.nz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undergraduate Convenor</th>
<th>Room: E.3.21</th>
</tr>
</thead>
<tbody>
<tr>
<td>and First Year Mentor</td>
<td>Phone: 07 838 4656</td>
</tr>
<tr>
<td>Professor Bill Henderson</td>
<td>Email: hende@waikato.ac.nz</td>
</tr>
</tbody>
</table>
Chemistry major

General structure of a Chemistry Major for the BSc and BSc(Tech) degrees

<table>
<thead>
<tr>
<th>100 LEVEL</th>
<th>200 LEVEL</th>
<th>300 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM111 15 points</td>
<td>CHEM112 15 points</td>
<td>100 level – Prerequisites: CHEM111 Structure and Spectroscopy and CHEM112 Chemical Reactivity.</td>
</tr>
<tr>
<td>CHEM211 20 points</td>
<td>CHEM212 20 points</td>
<td>200 level – At least 60 points at 200 level Chemistry.</td>
</tr>
<tr>
<td>CHEM213 10 points</td>
<td>CHEM214 10 points</td>
<td></td>
</tr>
<tr>
<td>CHEM311 20 points</td>
<td>CHEM312 20 points</td>
<td>300 level – At least 60 points at 300 level Chemistry.</td>
</tr>
<tr>
<td>CHEM313 10 points</td>
<td>CHEM314 10 points</td>
<td></td>
</tr>
</tbody>
</table>

Choosing papers

Entry into Chemistry papers – Chemistry major

The normal entry level to 100 level Chemistry papers is 16 credits at NCEA level 3 or higher in chemistry. Students may also be admitted at the discretion of the Undergraduate Convenor, on a case by case basis. Discretionary entry may be available to mature students who can show prior learning/work experience in chemistry. If you are considering either of these options, we strongly recommend that you seek advice from staff in the Dean’s Office of the Faculty of Science & Engineering.

Entry into CHEM100

Students who require some Chemistry background for a major other than Chemistry, should consider taking CHEM100 – Chemistry in Context. The entry prerequisite for this paper is NCEA level 1 Science.
Chemistry major

To complete a major in Chemistry, students must complete 120 points above 100 level, including 60 points above 200 level from compulsory chemistry papers.

100 level

Students intending to major in Chemistry or a related field should choose the two core papers:

Prerequisites

- CHEM111A – Structure and Spectroscopy 15 points
- CHEM112B – Chemical Reactivity 15 points

200 level

Students intending to major in Chemistry are required to take at least 60 points from 200 level Chemistry papers, including the following compulsory papers:

- CHEM211A – Analytical and Inorganic Chemistry 1 20 points
- CHEM212B – Organic and Physical Chemistry 1 20 points
- CHEM213A – Analytical and Inorganic Chemistry Laboratory 1 10 points
- CHEM214B – Physical and Organic Chemistry Laboratory 1 10 points

300 level

Students intending to major in Chemistry are required to take at least 60 points from the following 300 level Chemistry papers:

- CHEM311B – Analytical and Inorganic Chemistry 2 20 points
- CHEM312A – Organic and Physical Chemistry 2 20 points
- CHEM313B – Analytical and Inorganic Chemistry Laboratory 2 10 points
- CHEM314A – Organic and Physical Chemistry Laboratory 2 10 points

The remaining papers needed to complete the requirements for the BSc and BSc(Tech) degrees may come from other science subjects or papers from other faculties or schools.
Earth Sciences

An understanding of Earth Sciences is essential if we are to sustainably manage the Earth’s energy, water, mineral, soil and coastal resources. The Earth sciences are also the key to predicting and mitigating natural hazards such as floods, earthquakes, tsunami, landslides and volcanic eruptions.

Earth Sciences at the University of Waikato include study of coastal and marine science, climate change, soil science, hydrology, volcanology, sedimentary geology and engineering geology. Our graduates in Earth Sciences go on to a diverse range of careers in environmental and resource management as well as research.

We are situated close to both North Island coasts, a short drive from the active Taupo Volcanic Zone, at the heart of the most productive New Zealand farming region, and have New Zealand’s longest river at our doorstep. The teaching programme provides an opportunity for students in their first year to develop a broad understanding of Earth’s systems, and then in following years to increase the depth of their studies to include topics such as sedimentary geology, soil science and land management, hydrology and water resource management, meteorology, oceanography, volcanology, coastal marine science, engineering geology, georesource exploration, global environmental change, environmental monitoring and management, and natural hazards.

Earth Sciences at Waikato includes and builds upon physical geography.

We offer a learning experience that goes beyond the laboratory and lecture room – out into the world.

Contacts for Earth Sciences

<table>
<thead>
<tr>
<th>School of Science Office</th>
<th>Room:</th>
<th>E.2.20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phone:</td>
<td>07 838 4024</td>
</tr>
<tr>
<td></td>
<td>Email:</td>
<td>earth@waikato.ac.nz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undergraduate Convenor</th>
<th>Room:</th>
<th>DE.1.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Willem de Lange</td>
<td>Phone:</td>
<td>07 837 9389</td>
</tr>
<tr>
<td></td>
<td>Email:</td>
<td>delange@waikato.ac.nz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undergraduate Convenor</th>
<th>Room:</th>
<th>DE.1.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Vicki Moon</td>
<td>Phone:</td>
<td>07 837 9388 extn 8508</td>
</tr>
<tr>
<td></td>
<td>Email:</td>
<td>vgmoon@waikato.ac.nz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year Mentor</th>
<th>Room:</th>
<th>E.1.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Hazel Needham</td>
<td>Phone:</td>
<td>07 838 4383</td>
</tr>
<tr>
<td></td>
<td>Email:</td>
<td>hneedham@waikato.ac.nz</td>
</tr>
</tbody>
</table>
Earth Sciences major

General structure of an Earth Sciences Major for the BSc and BSc(Tech) degrees

<table>
<thead>
<tr>
<th>Level</th>
<th>Paper Code</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 level</td>
<td>ERTH103</td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>ERTH104</td>
<td>15 points</td>
</tr>
<tr>
<td>200 level</td>
<td>ERTH2XX</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ERTH2XX</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ERTH2XX</td>
<td>20 points</td>
</tr>
<tr>
<td>300 level</td>
<td>ERTH3XX</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ERTH3XX</td>
<td>20 points</td>
</tr>
<tr>
<td></td>
<td>ERTH3XX</td>
<td>20 points</td>
</tr>
</tbody>
</table>

100 level – Prerequisites: ERTH103 Discovering Planet Earth and ERTH104 Earth and Ocean Environments.

200 level – At least 60 points at 200 level Earth Sciences from 10 or 20 point papers.

300 level – At least 60 points at 300 level Earth Sciences from 10 or 20 point papers.

Choosing papers

Entry into Earth Sciences papers

There are no formal prerequisites for admission to 100 level Earth Sciences papers. You will, however, be best prepared if you have taken any of biology, chemistry, general science or geography at least through to NCEA level 2.

In some cases, we are able to relax the rules relating to prerequisites. If you would particularly like to take a paper for which you have not satisfied a specified requirement, please come and speak to Earth Sciences staff about possible options.

Earth Sciences major

To complete a major in Earth Sciences, students must complete 120 points above level 100, including 60 points above level 200 from Earth Sciences papers.

100 level – papers are worth 15 points

Students wishing to major in Earth Sciences or a related field should choose the two core papers.

Prerequisites

ERTH103B – Discovering Planet Earth 15 points
ERTH104A – Earth and Ocean Environments 15 points

200 level

Choose at least 60 points at 200 level in Earth Sciences papers.

300 level

Choose at least 60 points at 300 level in Earth Sciences papers.

The remaining papers needed to complete the requirements for the BSc and BSc(Tech) degrees may come from other science subjects or papers from other faculties or schools.

Refer to page 99 for Earth Sciences paper descriptions.
Electronics

Electronics is the science and technology concerned with the controlled flow of electrons and other carriers of electric charge. Papers cover theory, design, and construction of electronic devices, circuits, instruments, or systems.

The Electronic Engineering programme is available in the Bachelor of Engineering (Honours) degree. See page 19 for more details. Papers in electronics are available at all levels of study from undergraduate degrees through to postgraduate and doctoral studies. See page 103 for details of Electronics papers.

Contacts for Electronics

Electronics is administered by the School of Engineering.

<table>
<thead>
<tr>
<th>Convenor</th>
<th>Room:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td>CD.3.03</td>
</tr>
<tr>
<td>Rainer Künnemeyer</td>
<td>Phone: 07 838 4630</td>
</tr>
<tr>
<td></td>
<td>Email: rainer@waikato.ac.nz</td>
</tr>
</tbody>
</table>

Electronics major

<table>
<thead>
<tr>
<th>General structure of an Electronics Major for the BSc and BSc(Tech) degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 LEVEL</td>
</tr>
<tr>
<td>200 LEVEL</td>
</tr>
<tr>
<td>300 LEVEL</td>
</tr>
</tbody>
</table>

100 level – Prerequisites: ENEL111 Introduction to Electronics. Recommended: PHYS103 Physics for Scientists and Engineers, COMP103 Introduction to Computer Science 1, MATH101 Introduction to Calculus, MATH102 Introduction to Algebra.

300 level – 60-80 points at level 300 Electronics.

Specialisations

Students may undertake the following specialisations for the BSc and BSc(Tech) major in Electronics.

Science International page 68
Te Pūtaiao me ngā take Māori page 71

Choosing papers

Electronics major

To complete a major in Electronics, students must complete 120 points above 100 level, including at least 60 points above 200 level in Electronics papers.
100 level
The following papers are recommended to fulfil prerequisites for 200 and 300 level papers:

Prerequisites

ENEL111A/T – Introduction to Electronics 15 points

To fulfil prerequisites for other 200 and 300 level electronics papers, you are highly recommended to also enrol in:

COMP103A/B – Introduction to Computer Science 1 15 points
MATH101A/B/S – Introduction to Calculus 15 points
MATH102A/B – Introduction to Algebra 15 points
PHYS103B – Physics for Scientists and Engineers 1 15 points

Please take care when choosing 100 level papers as many are required as prerequisites for 200 and 300 level papers. Failure to complete prerequisites will limit your paper choices or involve doing more papers than the required minimum to complete your degree.

200 level
Choose a further 40 to 60 points at 200 level Electronics.

Compulsory papers

ENEL205B – Analog Electronics and Circuit Analysis 20 points
ENEL212A – Electronics for Digital Systems 10 points

Optional papers

COMP200A – Computer Systems 10 points
ENEL213A – Instrumentation 10 points
ENEL284B – Electricity and Magnetism 10 points
ENEL285A – Quantum and Solid State Physics 10 points

300 level
*Choose a further 60 to 80 points from 300 level electronics papers to give a total of 120 points at level 200 and above. Choose from:

COMP311B – Computer Systems Architecture 20 points
ENEL301A/B/C/Y – Special Topics in Electronics 20 points
ENEL312A – Electromagnetic Waves 20 points
ENEL317B – Microprocessor Applications and Control 20 points
ENEL321B – Application Specific Integrated Circuits 20 points
ENEL324A – Optoelectronics 20 points
ENEL382B – High Speed Communications 20 points
ENEL385B – Power Electronics 20 points

Refer to page 103 for Electronics paper descriptions.

The remaining papers needed to complete the requirements for the BSc and BSc(Tech) degrees may come from other science subjects or papers from other faculties or schools.
Environmental Sciences

If we are to achieve environmental sustainability, we need to understand how the environment works and ensure we leave the world in a healthy functioning state for future generations.

Environmental Sciences at the University of Waikato is the interdisciplinary and systematic study of our environment as well as our role in its management. Pressures and impacts on our environment are increasing as the human population grows and we seek to utilise natural resources in ever increasing amounts.

Environmental Science can provide the scientific basis for understanding environmental problems, and finding solutions to them. By studying environmental science and becoming qualified to work as an environmental scientist or technician, you can become directly involved in solving our environmental problems. A comprehensive understanding of environmental science is also necessary for those entering industries, consulting companies, and government agencies to ensure that they wisely manage the resources.

Contacts for Environmental Sciences

Environmental Sciences is jointly taught between Biological Sciences, Chemistry and Earth Sciences.

Convenor: Environmental Sciences
Room: CD.3.02
Dr Adam Hartland
Phone: 07 837 9390
Email: ahrtland@waikato.ac.nz

Environmental Sciences Interdisciplinary major

General structure of a Environmental Sciences Interdisciplinary Major for the BSc and BSc(Tech) degrees

<table>
<thead>
<tr>
<th>Level</th>
<th>BIOL102</th>
<th>ERTH104</th>
<th>CHEM</th>
<th>ERTH*</th>
<th>BIOL**</th>
<th>ERTH***</th>
<th>****</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 LEVEL</td>
<td>15 points</td>
<td>15 Points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td></td>
</tr>
</tbody>
</table>
Specialisations

The Faculty of Science & Engineering has a strong environment-related focus with a range of specialisations for students interested in pursuing careers in environmental management, environmental planning, environmental engineering, and research related to the environment. These programmes draw on a range of subject areas including biology, chemistry, Earth sciences, engineering, geography, mathematics and physics.

Environmental Microbiology

Environmental microbiology focuses on the understanding and manipulation of microbial pathways that influence the natural environment. Students will gain an understanding of the important role microorganisms play in underpinning the environmental process, their role in nutrient and carbon cycling and their importance in bioremediation, soil fertility, eutrophication and waste disposal.

Environmental Modelling

Environmental modelling focuses on the quantitative skills necessary to write and operate computer models necessary to predict future environmental change, to investigate human impacts on natural ecosystems, and how to manage and mitigate those impacts. This specialisation is for students who want to be able to model dynamics of estuaries, lakes, rivers, and coastlines, waves and ocean currents, and predict sediment movement on the continental shelf and estuaries; as well as to understand principles of environmental modelling.

Land and Freshwater Environments

This specialisation is for students with interests in the management of land and water resources and approaches to mitigate adverse impacts. Specific areas include soil management, water quality and nutrient dynamics. Students will gain a combination of biological and earth science skills and theory to allow a broad understanding of terrestrial and aquatic environments, and the links between biophysical processes to ecosystem dynamics.

Marine Sciences

This specialisation provides an integrated approach to biological and physical processes in the marine environment, with particular reference to coastal waters and estuaries. The knowledge gained from biological studies that examine how marine organisms function, and the processes affecting their distribution and abundance, is critical for the sustainable exploitation of marine environments.
Choosing papers

Environmental Sciences interdisciplinary major

To complete a major in Environmental Sciences, students must complete 120 points above 100 level, including 60 points about 200 level, from compulsory papers.

100 level

Prerequisites

BIOL102A – The Biology of Organisms 15 points
ERTH104A – Earth and Ocean Environments 15 points

Students are strongly advised to consider taking some of the following papers

CHEM100A – Chemistry in Context 15 points or
CHEM111A – Structure and Spectroscopy 15 points
ERTH103B – Discovering Planet Earth 15 points
ENVS101B – Environmental Science 15 points
MATH165A/B – General Mathematics 15 points
STAT111B – Statistics for Science 15 points or
STAT121A/S – Introduction to Statistical Methods 15 points

200 level

Students should seek advice when selecting 200 level papers to ensure they select appropriate papers to cover prerequisites for the 300 level papers they may wish to pursue.

Compulsory papers

BIOL212A – Ecology 20 points

*Choose a further 40 points from:

CHEM261B – Environmental Chemistry and Geochemistry 20 points
ERTH233A – Soils in the Landscape 10 points
ERTH234A – Soil Properties and their Management 10 points
ERTH242B – Oceanography 20 points
ERTH245A – Weather and Climate 10 points
ERTH246B – Introduction to Hydrology 10 points

Students are strongly advised to consider taking further papers from the list above.
Other papers to consider including are any other ERTH or BIOL papers, or:
CHEM211A – Analytical and Inorganic Chemistry 1 20 points
ENMP241B – Environmental Technology 1 20 points
ENVP206A – Principles of Environmental Planning 20 points
ERTH251B – Engineering Geomorphology 20 points
ERTH284B – Introduction to Environmental Monitoring 20 points
GEOG219A – Māori Lands and Communities 20 points
GEOG228A – Information Technology and Cartography 20 points

300 level

**Choose 20 points from the following 300 level Biological Sciences papers
BIOL312A – Applied Terrestrial Ecology 20 points
BIOL313B – Applied Freshwater Ecology 20 points
BIOL314A – Marine Biology and Monitoring 20 points

***Choose 20 points from the following 300 level Earth Sciences papers:
ERTH333A – Pedology and Land Evaluation 10 points
ERTH334B – Soil and Land Management 10 points
ERTH343B – Coastal Geomorphology and Management 20 points
ERTH344A – Coastal Oceanography and Engineering 20 points
ERTH345A – Catchment Hydrology 10 points
ERTH346B – Freshwater Resources and Hazards 10 points

****Choose a further 20 points from the 300 level papers listed above or CHEM361A –
Applied Environmental Geochemistry.
Students are strongly advised to consider taking further papers from the lists above.

Other papers to consider including are any other ERTH or BIOL papers, or:
CHEM311B – Analytical and Inorganic Chemistry 2 20 points
ENMP341A – Environmental Technology 2 20 points
GEOG306A – Disasters and Developments 20 points
GEOG328B – Geographical Information Systems 20 points

The remaining papers needed to complete the requirements for the BSc and BSc(Tech) degrees may
come from other science subjects or papers from other faculties or schools.

Note(s): For descriptions of individual papers refer to the following paper codes in the papers
section (page 81): BIOL Biological Sciences; CHEM Chemistry; ENMP Materials and Processing; ENVS
Environmental Sciences; ERTH Earth Sciences. For papers with other subject codes refer to the 2017
University of Waikato Calendar.
Materials and Processing

Materials and Processing is concerned with all the processes and activities of converting raw materials and commodity materials into valuable products required by manufacturers or the end-consumer.

Processing our raw materials and commodity goods more effectively is important to New Zealand’s continuing economic welfare. We need to develop products that have significant value in world markets. To do this, we need to understand fully the properties of materials as diverse as food, wood, metals, plastics and fuel. We then need to know how to use this knowledge to design, manufacture and process these materials into high-value products such as dietary formula, ceramics that can withstand high temperatures, titanium alloys, pharmaceuticals, laminated boards and functional proteins. We also need to understand the properties of these high-value products and how they will interact with their environment, whether it be within the body or in the atmosphere.

The discipline serves industrial and other activities where material is undergoing a change, be it chemical, biochemical or physical. Process engineering involves knowing how to prepare feed materials, how to make reactions occur, separating and purifying products, controlling wastes, minimizing energy usage, and ultimately adding value to the raw materials used to produce something useful to people. These skills form the basis for most of New Zealand’s export earnings.

The Materials and Process Engineering programme is available through a Bachelor of Engineering (Honours) degree. See page 27 for more details. Papers in Materials and Processing are available at all levels of study from undergraduate degrees through to postgraduate and doctoral studies. See page 113 for details of Materials and Processing papers.

Contacts for the School of Engineering

Materials and Processing is administered by the School of Engineering.

<table>
<thead>
<tr>
<th>Enrolment Contact Person and First Year Mentor</th>
<th>Room: LSL.G.32</th>
<th>Phone: 07 838 4684</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Rob Torrens</td>
<td>Email: r.torrens@waikato.ac.nz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Convenor</th>
<th>Room: EF.2.02</th>
<th>Phone: 07 838 4701</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Professor</td>
<td>Email: walmsley@waikato.ac.nz</td>
<td></td>
</tr>
<tr>
<td>Michael Walmsley</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Materials and Processing major

General structure of a Materials and Processing Major for the BSc and BSc(Tech) degrees

<table>
<thead>
<tr>
<th>Level</th>
<th>Code</th>
<th>Subject</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>ENGG180</td>
<td>Foundations of Engineering</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>ENMP102</td>
<td>Introduction to Materials Science</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>ENMP2XX</td>
<td>Materials 1</td>
<td>20</td>
</tr>
<tr>
<td>200</td>
<td>ENMP2XX</td>
<td>Engineering Thermodynamics</td>
<td>20</td>
</tr>
<tr>
<td>300</td>
<td>ENMP3XX</td>
<td>Materials 2</td>
<td>20</td>
</tr>
</tbody>
</table>

100 level – ENGG180 Foundations of Engineering and ENMP102 Introduction to Materials Science and Engineering.

200 level – 60 Points at level 200 Materials and Processing. ENMP211 Materials 1 and ENMP221 Engineering Thermodynamics are highly recommended.

300 level – 60 points at level 300 Materials and Processing.

Choosing papers

Entry into Materials and Processing papers

There are no formal prerequisites for entry into 100 level papers in Materials and Processing. The best prepared candidates will have, at a minimum, completed secondary study at level 3 NCEA in chemistry, physics, mathematics and/or technology. Nonetheless, students without this formal background who can demonstrate sufficient motivation are able to attempt these papers. Higher entrance requirements are expected for students who wish to enrol in a Bachelor of Engineering (Honours) degree.

In some cases, we are able to relax the rules on prerequisites. If you would particularly like to take a paper for which you have not satisfied a specified requirement, please talk to Faculty staff.

Papers for the Materials and Process Engineering programme for the BE(Hons) degree are specified (see page 27).

Materials and Processing major

100 level

If you are doing a BSc or BSc(Tech) degree and are interested in a Materials and Processing major, you should take the following core papers.

Prerequisites

ENGG180A – Foundations of Engineering 15 points
ENMP102B – Introduction to Materials Science and Engineering 15 points

It is a good idea to do at least two mathematics papers, at least one chemistry paper and one physics paper.
200 level

Highly recommended papers

- ENMP211A – Materials 1 20 points
- ENMP221A – Engineering Thermodynamics 20 points

20 points from 200 level Materials and Processing papers

Additional papers may be taken from other materials and processing papers offered at 200 level or can be supported by papers from other subjects. For example, students interested in materials science are advised to take some chemistry papers; students interested in biotechnology are advised to take 200 level biological sciences papers.

300 level

Students need to take at least 60 points at level 300 in materials and processing.

Recommended papers

- ENMP311B – Materials 2 20 points
- ENMP321B – Process Engineering and Design 20 points

20 points from 300 level Materials and Process Engineering papers 20 points

The remaining papers needed to complete the requirements for the BSc and BSc(Tech) degrees may come from other science subjects or papers from other faculties or schools.

Students not intending to major in Materials and Processing

If you are not a Materials and Processing major, please feel free to sample from our wide variety of paper offerings. Generally, it will be easiest for you to pick up materials and processing papers at 100 and 200 level, as these papers will be less affected by prerequisites. Two very popular papers amongst students in this category are ENMP282 and ENMP283 Science and Engineering Management A and B.

If you intend to major in Chemistry, Biological Sciences, Earth Sciences, Electronics, or Physics, ENGG180 and ENMP102 will help you see how your subject major fits in to New Zealand’s industry and manufacturing.

200 level materials and processing papers can be useful adjuncts to students majoring in Chemistry, Biological Sciences, Earth Sciences, Electronics and Physics. For instance, Chemistry and Earth Sciences students will find materials science papers (ENMP211 Materials 1, ENMP214 Manufacturing Processes, ENMP215 Manufacturing Technology) useful; Environmental Sciences students will find ENMP241 Environmental Technology 1 useful; and Biological Sciences and Chemistry students interested in biotechnology and food processing will find ENMP222 Biotechnology: Food and Bioresources and ENMP322 Biotechnology useful. Process engineering papers, ENMP221 Engineering Thermodynamics and ENMP223 Thermofluids, provide an understanding of the key principles in fluid, heat and mass flows, and are useful for Chemistry and Biotechnology majors.
Psychology

Psychology is about understanding the behaviour and cognitive processes of people and animals in their physical, social and organisational environment. As a behavioural science, psychology examines the way behaviour is learned and can be changed.

As a social science, it focuses on individuals within the context of families, organisations and other groups, communities, cultures and societies. As a biological science, it studies the senses (hearing, vision, touch) and how the brain and physiological systems relate to behaviour. As a cognitive science, psychology studies perception, attention, memory, thinking and language understanding. The study of development, personality, learning and motivation are also part of psychology.

At Waikato, psychology can be studied in a science, a social sciences or an arts degree.

Contacts for the School of Psychology

School Manager
Sue Carnaby
Room: K.1.14
Phone: 07 838 4032
Email: carnabys@waikato.ac.nz

Degrees

Psychology is available as a major subject for the Bachelor of Science (BSc), Bachelor of Arts (BA), and Bachelor of Social Sciences (BSoSc) degrees. Students who wish to complete a BSoSc or BA degree should consult the Faculty of Arts & Social Sciences Handbook for details.

Psychology major

<table>
<thead>
<tr>
<th>General structure of a Psychology Major for the BSc degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 LEVEL</td>
</tr>
<tr>
<td>PSYC102 15 points</td>
</tr>
<tr>
<td>PSYC225 10 points</td>
</tr>
<tr>
<td>PSYC227 10 points</td>
</tr>
<tr>
<td>PSYC230 10 points</td>
</tr>
<tr>
<td>PSYC3XX 20 points</td>
</tr>
<tr>
<td>PSYC3XX 20 points</td>
</tr>
<tr>
<td>PSYC3XX 20 points</td>
</tr>
</tbody>
</table>

Note(s): Other 300 level Psychology papers can also satisfy the 60 points requirement on programme approval.
Choosing papers

Entry into Psychology papers

There are no formal prerequisites for admission to 100 level psychology papers. Individual papers may be taken, assuming any prerequisites listed are met.

Psychology major

To complete a major in psychology in a BSc or BSc(Tech), students must complete 120 points above 100 level in psychology papers including at least 60 points above 200 level.

Recommended preparatory papers

It is recommended that you consider including an introductory writing paper such as ALED100 Writing for University Purposes as part of your degree. In addition, it is recommended that if you do not have mathematics in your background you should consider taking MATH168 Preparatory Mathematics.

100 level

It is highly recommended that you complete both PSYC102 Social and Developmental Psychology, and PSYC103A General and Experimental Psychology.

Prerequisites

PSYC102B – Social and Developmental Psychology 15 points
PSYC103A – General and Experimental Psychology 15 points

200 level

Compulsory papers

PSYC208B – Psychological Research: Analysis, Design and Measurement 20 points
PSYC225A – Behavioural Psychology and Learning 10 points
PSYC226A – The Psychology of Perception 10 points
PSYC227A – Foundations of Behavioural Neuroscience 10 points
PSYC230B – Cognitive Psychology 10 points

It is highly recommended that you complete all six 200 level 10 point psychology papers.

Make sure that you include prerequisite papers, including 100 level papers needed for the following year of study.
300 level

Choose 60 points from level 300 psychology papers.

Listed below are some combinations of third-year papers for various areas in psychology. You are encouraged to consult academic staff for further recommendations.

To continue to graduate study in psychology (ie BSocSc(Hons), MSocSc, BSc(Hons), the postgraduate certificate/diplomas or the Master of Applied Psychology) you must have passed PSYC307 Research Methods, and meet any other criteria for entry to those specific programmes (refer to the Psychology Graduate Handbook). You are also advised to read the Graduate Handbook for 300 level prerequisites required for specific graduate papers.

Animal Behaviour

BSc students should take PSYC314 Behaviour Analysis. Students should also take Biological Science papers, including BIOL333 Advanced Animal Behaviour, and its prerequisites. Students of the BSc or BSc(Tech) degrees may also take Animal Behaviour as a major subject (see page 41).

Applied Cognitive Science

Behaviour Analysis (including Applied Behaviour Analysis)

PSYC307 Research Methods, PSYC314 Behaviour Analysis and PSYC337 Psychological Measurement. Which other psychology papers are relevant will depend on your area of interest.

Clinical Psychology

PSYC307 Research Methods, PSYC337 Psychological Measurement, and PSYC338 Abnormal Psychology are the papers required for entry to the Postgraduate Diploma in Clinical Psychology. Recommended papers are PSYC301 Community, Culture and Diversity, PSYC314 Behaviour Analysis and PSYC319 Psychological Perspectives on Child Development.

Applied Social and Community Psychology, and Organisational Psychology

If you are interested in these areas of Psychology you should consult the Faculty of Arts & Social Sciences Handbook, or academic staff for recommendations.

Note(s): Directed Study papers will not be counted towards the 120 points required for a major in psychology.

Refer to page 125 for Psychology paper descriptions.

The remaining papers needed to complete the requirements for the BSc and BSc(Tech) degrees may come from other science subjects or papers from other faculties or schools.
Specialisations

Science International

Science International combines a Science major with study to 300 level in Chinese, French, German, Japanese or Spanish. Science graduates who are familiar with the language and customs of other countries are of particular value to export-oriented industries with a technological base.

Note(s): You should consult the relevant language department to determine your language entry level. Due to timetable constraints, it may not be possible to take all combinations of each science with each language.

Science International is available as a specialisation alongside any major subject for the Bachelor of Science or Bachelor of Science (Technology) degrees.

Contact for Science International

Students are advised to confirm programme details with the Faculty of Science & Engineering Registrar.

Faculty Registrar
Tim O’Brien

Room: FG.G.06
Phone: 07 838 4290
Email: tobrien@waikato.ac.nz

Structure of the Science International Specialisation

<table>
<thead>
<tr>
<th>Level</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Language</th>
<th>Language</th>
<th>Science</th>
<th>Science</th>
<th>Science</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15 points</td>
</tr>
<tr>
<td>200</td>
<td>20 points</td>
</tr>
<tr>
<td>300</td>
<td>20 points</td>
<td>20 points *</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Language</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15 points</td>
<td>15 points</td>
<td>15 points</td>
<td>15 points</td>
</tr>
<tr>
<td>200</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
</tr>
<tr>
<td>300</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
</tr>
</tbody>
</table>

* indicates a choice between Science or Language.
100 level Science papers
Choose at least 90 points from 100 level Science papers, including 30 points from your Science subject major.

200 and 300 level Science papers
To meet the requirements of a major, students must complete 120 points above 100 level in that subject, including 60 points above 200 level.

*Choose 20 points from 200 or 300 level Science papers.

Language specialisation
To meet the requirements of a language specialisation, students must complete 80 points above 100 level in that language, including 40 points above 200 level.

Chinese specialisation papers
CHIN131A – Chinese Language 1: Part A 15 points
CHIN132B – Chinese Language 1: Part B 15 points
CHIN231A – Chinese Language 2: Part A 20 points
CHIN232B – Chinese Language 2: Part B 20 points
CHIN331A – Chinese Language 3: Part A 20 points
CHIN332B – Chinese Language 3: Part B 20 points

French specialisation papers
FREN131A – French for Beginners 1 15 points
FREN132B – French for Beginners 2 15 points
FREN231A – French Language Intermediate 1 20 points
FREN232A – French Language Intermediate 2 20 points
FREN321B – Translation Methodology and Practice 20 points
FREN331A – French Language Advanced 20 points
FREN390A/B/S – Directed Study 20 points

German specialisation papers
GERM131A – German for Beginners 1 15 points
GERM132B – German for Beginners 2 15 points
GERM231A – German Language Intermediate 1 20 points
GERM233B – German Language Intermediate 2 20 points
GERM301A – German Language Studies 3 20 points
GERM302A – Discourses of Love and Self in Modern German Literature 20 points
Japanese specialisation papers

- JAPA131A – Japanese 1: Part A 20 points
- JAPA132B – Japanese 1: Part B 20 points
- JAPA231A – Japanese 2: Part A 20 points
- JAPA232B – Japanese 2: Part B 20 points
- JAPA331A – Japanese 3: Part A 20 points
- JAPA332B – Japanese 3: Part B 20 points

Spanish specialisation papers

- SPAN131A/B – Spanish for Beginners 1 15 points
- SPAN132B – Spanish for Beginners 2 15 points
- SPAN231A – Intermediate Spanish 1 20 points
- SPAN232B – Intermediate Spanish 2 20 points
- SPAN305B – Latin American Literature 20 points
- SPAN310A – Spanish 3 20 points

Note(s): For descriptions of these papers refer to the Faculty of Arts & Social Sciences Undergraduate Handbook or the 2017 University of Waikato Calendar.
Specialisations

Te Pūtaiao me ngā take Māori

There is a fast-growing need for science graduates who are also fluent Māori language speakers. This specialisation enables students to pursue a science degree in a major subject while extending their knowledge of Māori language and culture.

This specialisation is available within any major subject for the Bachelor of Science or Bachelor of Science (Technology) degrees.

Note(s): You should consult the Faculty of Māori & Indigenous Studies to determine your language entry level. Due to timetable constraints, it may not be possible to take all combinations of each science with each stream.

Contact for Te Pūtaiao me ngā take Māori

Students are advised to confirm programme details with the Faculty Registrar.

Faculty Registrar
Room: FG.G.06
Tim O’Brien
Phone: 07 838 4290
Email: tobrien@waikato.ac.nz

Stream 1 is for students with little or no prior knowledge of Māori.

<table>
<thead>
<tr>
<th>Structure of Te Pūtaiao me ngā take Māori Specialisation – Stream 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 LEVEL</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>200 LEVEL</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>300 LEVEL</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*These papers are normally taken in Year 3.
100 level
Choose 30 points at 100 level from your Science major and 45 points from 100 level Science papers.

Te Pūtaiao me ngā take Māori specialisation papers
- MAOR111A/C – Te Reo Māori: Introductory 1 15 points
- MAOR112B/C – Te Reo Māori: Introductory 2 15 points
- TIKA163A/B – He Hinātore ki te Ao Māori: Introducing the Māori World 15 points

200 level
Choose 60 points at 200 level from your Science major.

Te Pūtaiao me ngā take Māori specialisation papers
- MAOR211A/C – Te Reo Māori: Post-Introductory 1 20 points
- MAOR212B/C – Te Reo Māori: Post-Introductory 2 20 points
- MAOR213A/C – Te Reo Māori: Post-Intermediate 1 20 points
- MAOR214B/C – Te Reo Māori: Post-Intermediate 2 20 points
- TIKA263B – He Ara Tikanga: Māori Identity in a Changing World

300 level
Choose 60 points at 300 level from your Science major and 20 points from 300 level Science papers.

Stream 2 is for students who have studied Māori to an advanced level or are fluent speakers.

Structure of Te Pūtaiao me ngā take Māori Specialisation – Stream 2

<table>
<thead>
<tr>
<th>100 LEVEL</th>
<th>200 LEVEL</th>
<th>300 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIENCE MAJOR</td>
<td>SCIENCE MAJOR</td>
<td>SCIENCE MAJOR</td>
</tr>
<tr>
<td>15 points</td>
<td>20 points</td>
<td>20 points</td>
</tr>
<tr>
<td>MAOR211</td>
<td>MAOR212</td>
<td>TIKA164</td>
</tr>
<tr>
<td>20 points</td>
<td>20 points</td>
<td>15 points</td>
</tr>
<tr>
<td>SCIENCE</td>
<td>SCIENCE</td>
<td>SCIENCE</td>
</tr>
<tr>
<td>15 points</td>
<td>15 points</td>
<td>15 points</td>
</tr>
<tr>
<td>MAOR213</td>
<td>MAOR214</td>
<td>TIKA264</td>
</tr>
<tr>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
</tr>
<tr>
<td>SCIENCE</td>
<td>SCIENCE</td>
<td>SCIENCE</td>
</tr>
<tr>
<td>20 points</td>
<td>20 points</td>
<td>20 points</td>
</tr>
</tbody>
</table>
100 level
Choose 30 points at 100 level from your Science major and 45 points from 100 level Science papers

Te Pūtaiao me ngā take Māori specialisation papers

MAOR211A/C – Te Reo Māori: Post-Introductory 1 20 points
MAOR212B/C – Te Reo Māori: Post-Introductory 2 20 points
TIKA164A – Mai i Tuwhakarere ki te Ao Hurihuri 15 points

200 level
Choose 60 points at 200 level from your Science major.

Te Pūtaiao me ngā take Māori specialisation papers

MAOR213A/C – Te Reo Māori: Post-Intermediate 20 points
MAOR214B/C – Te Reo Māori: Post-Intermediate 20 points
TIKA264B – Ngā Tikanga Apatahi 20 points

300 level
Choose 60 points at 300 level from your Science major.
Choose 20 points from 200 or 300 level Science papers.

Te Pūtaiao me ngā take Māori specialisation papers

MAOR313A/C/T – Te Reo Māori: Pre-Advanced 20 points
MAOR314B/C/S – Te Reo Māori: Advanced 20 points

Note(s): For descriptions of papers with the subject codes MAOR or TIKA refer to the Faculty of Māori & Indigenous Studies Handbook or the 2017 University of Waikato Calendar.
Conjoint degrees

All degrees within the Faculty of Science & Engineering can be combined with any other degree in the University of Waikato as part of a conjoint degree.

For more information on studying towards a Bachelor of Science, Bachelor of Science (Technology) or Bachelor of Engineering (Honours) as part of a conjoint degree, please contact the Faculty Registrar or Associate Dean (Teaching and Learning).

<table>
<thead>
<tr>
<th>Faculty Registrar</th>
<th>Room: FG.G.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim O’Brien</td>
<td>Phone: 07 838 4290</td>
</tr>
<tr>
<td></td>
<td>Email: tobrien@waikato.ac.nz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associate Dean</th>
<th>Room: FG.06D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching and Learning</td>
<td>Phone: 07 838 4582</td>
</tr>
<tr>
<td>Dr Alison Campbell</td>
<td>Email: a.campbell@waikato.ac.nz</td>
</tr>
</tbody>
</table>

The following outlines an example of the BSc component of a conjoint degree. The BSc(Tech) and BE(Hons) can also be taken as part of a conjoint degree. For information regarding papers required for other degree components please contact the relevant school or faculty.

BSc Component of a Conjoint degree

<table>
<thead>
<tr>
<th>100 LEVEL</th>
<th>SCIENCE MAJOR</th>
<th>SCIENCE</th>
<th>SCIENCE</th>
<th>SCIENCE</th>
<th>SCIENCE</th>
<th>ELECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>200 LEVEL</th>
<th>SCIENCE MAJOR</th>
<th>SCIENCE</th>
<th>SCIENCE</th>
<th>ELECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 level</td>
<td>200 level</td>
<td>200 level</td>
<td>200 level</td>
<td>200 level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>300 LEVEL</th>
<th>SCIENCE MAJOR</th>
<th>ELECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 level</td>
<td>300 level</td>
<td>200 or 300 level</td>
</tr>
</tbody>
</table>
Work placements

The Bachelor of Engineering (Honours) and Bachelor of Science (Technology) are both four-year degrees involving compulsory Work placement components. These paid Work placements give you valuable experience alongside practising experts in your field of study.

Our Cooperative Education Unit arranges and oversees your Work placement, ensuring the quality of your placement. The contacts made and experiences gained mean that graduates are very successful in finding employment within months of completing the BE(Hons) or BSc(Tech). Obtaining a suitable placement is strongly dependent on academic performance. Students are expected to maintain good grades if they are to secure placements.

The aim of the placements is to integrate academic learning with hands-on learning in the workplace, to produce capable, professional young scientists and engineers. The Cooperative Education Unit at the University of Waikato is the leader in New Zealand for cooperative education type programmes and places on average 300 students each year.
Contacts for the Cooperative Education Unit

Director
Dr Karsten Zegwaard
Room: E.G.16A
Phone: 07 838 4892
Email: k.zegwaard@waikato.ac.nz

Biology, Earth Sciences, Animal Behaviour
Sue McCurdy
Room: EG.04B
Phone: 07 838 4626
Email: s.mccurdy@waikato.ac.nz

Biotechnology, Biochemistry, Environmental Science, Chemistry
Ashley Webby
Room: EG.04A
Phone: 07 838 4517
Email: awebby@waikato.ac.nz

Civil Engineering, Computer Science, Electronic Engineering, Mechanical Engineering, Software Engineering
Jodie Springall
Room: EG.04C
Phone: 07 837 9454
Email: jspringa@waikato.ac.nz

Mechanical Engineering
Jewal Morrison
Room: EG.04C
Phone: 07 838 4100
Email: j.morrison@waikato.ac.nz

Degrees

Work placements are a compulsory component of the Bachelor of Engineering (Honours) and Bachelor of Science (Technology). Work placement papers are available in each subject and include preparation and reflection papers. For the structure of the Work placement component within each degree, please consult the following pages:

- Bachelor of Engineering (Honours)
 page 11
- Bachelor of Science (Technology)
 page 39

Papers

Work placement paper listings can be found on the following pages:

- Bachelor of Science (Technology) Work placement papers
 page 131
- Bachelor of Engineering (Honours) Work placement papers
 page 132
Other Programmes

Intermediates

Intermediate first year programmes are offered by the Faculty of Science & Engineering for entrance into professional degrees offered at other universities. You must consult the specialist school you intend to transfer to before enrolling in an intermediate programme at the University of Waikato. Even if you are taking the papers specified below, you should ensure your proposed programme is approved by the other university.

For more information, please contact the Faculty Registrar on 0800 438 254.

Engineering (Canterbury)

Option 1: Computer, Electrical, Electronic, and Software Engineering

100 level
- COMP103A/B – Introduction to Computer Science 1 15 points
- COMP104B/C/S – Introduction to Computer Science 2 15 points
- ENEL111A – Introduction to Electronics 15 points
- ENGG180A – Foundations of Engineering 15 points
- MATH101A/B/S – Introduction to Calculus 15 points
- MATH102A/B – Introduction to Algebra 15 points
- PHYS103B – Physics for Scientists and Engineers 1 15 points

Plus a further 15 points from 100 level papers.

It is recommended that students intending to take Software Engineering also take MATH258 Introduction to Discrete Mathematics, if possible.

Option 2: Mechatronics, Mechanical, Civil, Natural Resources, and Forest Engineering

100 level
- CHEM111A – Structure and Spectroscopy 15 points
- COMP103A/B – Introduction to Computer Science 1 15 points
- ENGG180A – Foundations of Engineering 15 points
- ENMP102B – Introduction to Materials Science and Engineering 15 points
- MATH101A/B/S – Introduction to Calculus 15 points
- MATH102A/B – Introduction to Algebra 15 points
- PHYS103B – Physics for Scientists and Engineers 1 15 points

Plus a further 15 points from 100 level papers.

Option 3: Mechanical, Civil, Natural Resources, Forest Engineering, and Chemical and Process Engineering

100 level
- CHEM111A – Structure and Spectroscopy 15 points
- COMP103A/B – Introduction to Computer Science 1 15 points
- ENGG180A – Foundations of Engineering 15 points
- ENMP102B – Introduction to Materials Science and Engineering 15 points
- MATH101A/B/S – Introduction to Calculus 15 points
- MATH102A/B – Introduction to Algebra 15 points
- PHYS103B – Physics for Scientists and Engineers 1 15 points

Plus a further 15 points from 100 level papers.

If you do not gain entry to a required paper on the basis of your NCEA results, you will be contacted as part of the enrolment process. The engineering intermediate can be taken over two years.
Forest Engineering (Canterbury)

100 level

BIOL101B – Cellular and Molecular Biology 15 points
BIOL102A – The Biology of Organisms 15 points
STAT121A/S – Introduction to Statistical Methods 15 points
FORE102 – Taught extramurally through the University of Canterbury 15 points

And one of:
CHEM111A – Structure and Spectroscopy 15 points
CHEM112B – Chemical Reactivity 15 points

And a further 15 points at 100 level from Economics, Mathematics, Physics or Geography.

Recommended:
ECON100A/B/S – Business Economics and the New Zealand Economy 15 points

Surveying (Otago)

100 level

ALED100A/B – Writing for University Purposes 15 points
COMP103A/B/C/D – Introduction to Computer Science 1 15 points
MATH101A/B/S – Introduction to Calculus 15 points
MATH102A/B – Introduction to Algebra 15 points
PHYS100A – Exploring Physics OR PHYS103B Physics for Scientists and Engineers 1 15 points
STAT121A/S – Introduction to Statistical Methods 15 points
SURX101 – Introductory Surveying (via distance learning at Otago) 15 points

And a further 15 points at 100 level.

Students must attend the SURX101 Introductory Surveying one-week field course, which is held at Otago.

Bridging programmes

If you are interested in or would you like to extend your knowledge of science, the University offers the Certificate of University Preparation (CUP) programme, which is designed to help you start your first academic year with the knowledge, skills and confidence needed to succeed.

We will contact you as part of the enrolment process if we feel that you would benefit from enrolling in one or more of these programmes. All of Waikato’s bridging programmes cover aspects of the Year 12 and Year 13 curriculum in the relevant areas to prepare you for enrolment in 100 level papers in Science. The University also offers the Certificate of Attainment in Foundation Studies (CAFS) programme, which is specifically designed to prepare high school graduates from backgrounds where English is an additional language, for degree study.

Note(s): Student loan and allowances support is available only to students enrolling in the Certificate of University Preparation.
Foundation Studies

The Foundation Studies programme is a two semester, full-time academic programme specifically designed to prepare high school graduates from non-English speaking backgrounds for degree study in New Zealand. For more information about the Foundation Studies programme, please refer to the Waikato Pathways College website at waikato.ac.nz/pathways

Compulsory papers:

- CAFS001 – English for Foundation Studies 1
- CAFS002 – English for Foundation Studies 2
- CAFS003 – Language and Learning Skills for Foundation Studies

Optional papers:

- CAFS004 – Bridging Calculus
- CAFS006 – Bridging Accounting
- CAFS009 – Bridging Biology
- CAFS010 – Bridging Chemistry
- CAFS011 – Bridging Physics
- CAFS013 – Comparative Cultures: An Introduction
- CAFS099 – English for Specific Purposes
- CUPR001 – Introduction to Study Skills
- CUPR008 – Bridging Mathematics with Statistics
- CUPR025 – Bridging General Science

Note(s): Students wanting entry into the BE(Hons) degree must achieve a B grade average, including no less than a B grade for CAFS001 and CAFS002, and no less than a B in CAFS011 Bridging Physics and CAFS004 Bridging Calculus, and for some programmes CAFS010 Bridging Chemistry. Students wanting entry into the BSc or BSc(Tech) degrees require no less than a B grade for CAFS001 and CAFS002 and no less than a C grade in all other papers. It is advantageous to select the Foundation science papers.
Certificate of University Preparation – CUP

The Certificate of University Preparation bridges the gap between high school and first year university study. This qualification is for people who do not gain University Entrance, but who are still committed to degree level study. The CUP covers key components of the Year 12 and 13 curriculum in a number of areas. If you do not gain University Entrance, subject to successful completion of the CUP programme, you can transfer to a degree.

The CUP programme requires one semester of full-time study and is made up of four non-credit papers. For more information, visit waikato.ac.nz/pathways

Compulsory:

CUPR001 – Introduction to Study Skills
CUPR002 – Introduction to Critical Thought and Expression

Plus 30 points from two of:

CAFS004 – Bridging Calculus
CAFS009 – Bridging Biology
CAFS010 – Bridging Chemistry
CAFS011 – Bridging Physics
CUPR008 – Bridging Mathematics and Statistics
CUPR025 – Bridging General Science

Note(s): Students wanting entry into the BSc or BSc(Tech) degrees from a CUP programme must have no less than a C grade in any paper. Students wanting entry into the BE(Hons) degree (depending on which specified programme you wish to study) must achieve no less than a B grade in two of physics, calculus and chemistry, plus no less than C grades in all other papers.

If you have applied to enrol in the Faculty of Science & Engineering and do not get University Entrance, your application will be referred to the staff administering the Certificate of University Preparation.

If you have any questions about your eligibility for the CUP, please contact the Faculty Registrar.

Other elective paper information can be found at waikato.ac.nz/pathways

STEM Academy in the Bridging Programmes:

Waikato Pathway College has set up the STEM (Science, Technology, Engineering and Maths) Academy to support students doing bridging science and maths papers in their studies and transition into their desired degrees. Facilitated study groups and targeted presentations (or seminars) are run during the semester.
Papers

Understanding paper codes 82
100 level Science papers 83
Biological Sciences 85
Chemistry 92
Civil Engineering 95
Earth Sciences 97
Electronics 103
Engineering 108
Environmental Sciences 112
Material and Processing 113
Physics 121
Psychology 123
Science 128
Work placements 129
Science 129
Engineering 131

Note(s): This section gives a brief description of the papers needed to complete a Bachelor of Engineering (Honours) (page 11), Bachelor of Science (page 37) or Bachelor of Science (Technology) (page 39). For more information on a paper, please contact the paper convenor/co-ordinator/lecturer listed for that paper.
Understanding paper codes

The code of each paper contains information regarding the subject, the level, the year, and the period and location of teaching.

Example: BIOL102-17A (HAM) – The Biology of Organisms

<table>
<thead>
<tr>
<th>Subject</th>
<th>Level</th>
<th>Paper</th>
<th>Year</th>
<th>Semester</th>
<th>Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL</td>
<td>1</td>
<td>02</td>
<td>-17</td>
<td>A</td>
<td>(HAM)</td>
</tr>
</tbody>
</table>

Subject codes

Descriptions of papers with the following subject codes are listed in this handbook.

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL</td>
<td>Biological Sciences</td>
</tr>
<tr>
<td>ENMP</td>
<td>Materials and Processing</td>
</tr>
<tr>
<td>CHEM</td>
<td>Chemistry</td>
</tr>
<tr>
<td>ENVS</td>
<td>Environmental Sciences</td>
</tr>
<tr>
<td>ENEL</td>
<td>Electronics</td>
</tr>
<tr>
<td>ERTH</td>
<td>Earth Sciences</td>
</tr>
<tr>
<td>ENGG</td>
<td>Engineering</td>
</tr>
<tr>
<td>PHYS</td>
<td>Physics</td>
</tr>
<tr>
<td>ENME</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>PSYC</td>
<td>Psychology</td>
</tr>
<tr>
<td>SCIE</td>
<td>Science & Engineering</td>
</tr>
<tr>
<td>(see Materials and Processing)</td>
<td></td>
</tr>
</tbody>
</table>

This handbook refers to, but does not provide descriptions of papers with the following subject codes:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH</td>
<td>Anthropology</td>
</tr>
<tr>
<td>COMP</td>
<td>Computer Science</td>
</tr>
<tr>
<td>ECON</td>
<td>Economics</td>
</tr>
<tr>
<td>ENVN</td>
<td>Environmental Planning</td>
</tr>
<tr>
<td>FREN</td>
<td>French</td>
</tr>
<tr>
<td>GEOR</td>
<td>Geography</td>
</tr>
<tr>
<td>GERM</td>
<td>German</td>
</tr>
<tr>
<td>JAPA</td>
<td>Japanese</td>
</tr>
<tr>
<td>MAOR</td>
<td>Te Reo Māori</td>
</tr>
<tr>
<td>MATH</td>
<td>Mathematics</td>
</tr>
<tr>
<td>MSYS</td>
<td>Management Systems</td>
</tr>
<tr>
<td>PHIL</td>
<td>Philosophy</td>
</tr>
<tr>
<td>POLS</td>
<td>Political Science</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spanish</td>
</tr>
<tr>
<td>STAT</td>
<td>Statistics</td>
</tr>
<tr>
<td>TIKI</td>
<td>Tikanga Māori</td>
</tr>
<tr>
<td>TOMG</td>
<td>Tourism Management</td>
</tr>
</tbody>
</table>

Period indicators

<table>
<thead>
<tr>
<th>Period Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A Semester: March – June</td>
</tr>
<tr>
<td>B</td>
<td>B Semester: July – November</td>
</tr>
<tr>
<td>C</td>
<td>An atypical teaching period</td>
</tr>
<tr>
<td>S</td>
<td>Summer School: January – February</td>
</tr>
<tr>
<td>T</td>
<td>Summer School 2: November – December</td>
</tr>
<tr>
<td>Y</td>
<td>Full year: March – November</td>
</tr>
</tbody>
</table>

Location indicators

<table>
<thead>
<tr>
<th>Location Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAM</td>
<td>Papers taught in Hamilton</td>
</tr>
<tr>
<td>TGA</td>
<td>Papers taught in Tauranga</td>
</tr>
<tr>
<td>NET</td>
<td>Online course</td>
</tr>
<tr>
<td>SEC</td>
<td>Papers taught at a secondary school</td>
</tr>
</tbody>
</table>
100 level Science papers

The following is a list of all of the 100 level papers available in Science subjects at the University of Waikato.

Biological Sciences
- BIOL101B – Cellular and Molecular Biology
- BIOL102A – The Biology of Organisms

Chemistry
- CHEM100A – Chemistry in Context
- CHEM106 – Chemical Hazards, Safety and Legislation†
- CHEM111A/T – Structure and Spectroscopy
- CHEM112B – Chemical Reactivity

Computer Science
- COMP103A/B – Introduction to Computer Science 1
- COMP104B/S – Introduction to Computer Science 2
- COMP123A/B/S – The Computing Experience
- COMP124 – He Tomokanga ki te Ao Rorohiko†
- COMP125A – Visual Computing
- COMP126B – Computing Media
- ENGG182A/B – Engineering Computing

Earth Sciences
- ERTH103B – Discovering Planet Earth
- ERTH104A – Earth and Ocean Environments

Electronics
- ENEL111A/T – Introduction to Electronics

Engineering
- ENGG180A – Foundations of Engineering
- ENGG110B – Engineering Mechanics

Environmental Science
- ENVS101B – Environmental Science*

Materials and Process Engineering
- ENMP102B – Introduction to Materials Science and Engineering
Mathematics
MATH101A/B/S – Introduction to Calculus
MATH102A/B – Introduction to Algebra
MATH165A/B – General Mathematics
MATH168A/B – Preparatory Mathematics**
ENGG183A/B – Linear Algebra and Statistics for Engineers
ENGG184A/B/S – Calculus for Engineers

Philosophy
PHIL102B – Introduction to Logic

Physics
PHYS100A – Exploring Physics
PHYS103B – Physics for Scientists and Engineers 1

Psychology
PSYC102B – Social and Developmental Psychology
PSYC103A – General and Experimental Psychology

Statistics
STAT111B – Statistics for Science
STAT121A/S – Introduction to Statistical Methods

* Interdisciplinary paper with contributions from Biological Sciences, Chemistry and Earth Sciences.

** Cannot be included in the requirement of 105 points at 100 level across four science subjects for the BSc and BSc(Tech) degrees.
Biological Sciences

100 level papers

BIOL101-17B (HAM) & 17B (SEC) – Cellular and Molecular Biology 15 points
This first year paper deals with the ultrastructure and function of both prokaryotic and eukaryotic cells, including a discussion of the energy flow in photosynthesis, respiration and metabolism. An introduction to microbiology emphasises the structure, metabolic and taxonomic diversity of microorganisms and viruses, and the immune response. Molecular genetics focuses on the use of DNA information to control cellular activities and includes an introduction to recombinant DNA technologies, while Mendelian and population genetics focuses on the generation of genetic diversity and the principles of evolution.

This paper is one of the two core papers for all students majoring in Biological Sciences or intending to do at least some biology papers at the second and third year level.

Lecturer(s): Associate Professor Ian McDonald, Dr Ryan Martinus, TBA
Senior Tutor: Brydget Tulloch
Required book(s): Reece et al. Campbell Biology 10th ed (Benjamin Cummings)
Assessment: Internal assessment/examination ratio: 1:1

BIOL102-17A (HAM) (SEC) – The Biology of Organisms 15 points
This paper is concerned with the distinctive features of the various groups of plants and animals, and how they have overcome various basic problems such as the acquisition of nutrients, gaseous exchange, regulation and transport of body fluids, reproduction, and development. Aspects of animal behaviour, and the principles of ecology are also covered.

Like its counterpart BIOL101, this paper is a foundation paper for all students majoring in Biological Sciences or intending to do at least some biology papers at second and third year levels.

Lecturer(s): TBC
Senior Tutor: Brydget Tulloch
Required book(s): Reece et al. Campbell Biology 10th ed (Benjamin Cummings)
Assessment: Internal assessment/examination ratio: 1:1

ENVS101-17B (HAM) – Environmental Science 15 points
For details see Environmental Sciences ENVS101.
200 level papers

BIOL200-17B (HAM) – Behavioural Ecology and Conservation 20 points
An introduction to the principles and concepts of behavioural ecology, and to the application of these to case studies in conservation biology in New Zealand.

Lecturer(s): Dr Clare Browne
Prerequisite(s): BIOL102
Assessment: Internal assessment/examination ratio: 1:1

BIOL201-17A (HAM) – Evolution and Diversity of Life 20 points
An examination of the evolutionary history of life, beginning with an introduction to the history and philosophy of evolutionary thinking. Other topics include present-day evidence of evolution in plant, animal, and bacterial taxa, modern methods for obtaining and analysing this evidence, and discussion of the mechanisms of evolution. This paper should be regarded as essential by all students of biology.

Lecturer(s): Dr Michael Clearwater, Dr Chrissen Gemmill, Professor Carolyn King and Dr Ian Duggan
Prerequisite(s): BIOL101 or BIOL102
Assessment: Internal assessment/examination ratio: 1:1

BIOL210-17B (HAM) – Introduction to Genetics 20 points
This paper deals with genetics in the widest sense, from the molecular and cellular to the applied and evolutionary. Both prokaryote and eukaryote genetics are discussed with respect to DNA replication, gene expression and control, and the role of mutations at both the DNA and chromosomal levels. Applications of molecular genetics such as cloning, DNA sequencing, genetic engineering, DNA fingerprinting and antibody technologies are introduced. An in-depth treatment of Mendelian genetics and an introduction to quantitative genetics complete the paper.

The paper is seen as being of major importance to students of biology, irrespective of whether their interests are in metabolic and cellular processes, plant/animal genetic improvement, or ecological and evolutionary.

Lecturer(s): Dr Ray Cursons, Dr Linda Peters and Dr Steve Bird
Prerequisite(s): BIOL101
Assessment: Internal assessment/examination ratio: 1:1

BIOL212-17A (HAM) – Ecology 20 points
This paper covers the principles of ecology, including adaptation to environment, species interactions, population dynamics, biogeography, and conservation ecology. Weekend field trips and computer laboratory work are essential elements of this paper.

Lecturer(s): Dr Ian Duggan, Professor Brendan Hicks, Professor Conrad Pilditch and Professor David Hamilton
Prerequisite(s): BIOL102, (ENVS101 is strongly recommended)
Assessment: Internal assessment/examination ratio: 1:1
BIOL223-17B (HAM) – Plant Biology and Ecology 20 points
An introduction to the structure and adaptation of plants, ecology, reproduction, evolution and systematics. Laboratory work emphasises practical handling of plants. The paper provides a foundation for advanced plant papers, and complements BIOL226 Flora of Aotearoa.
Lecturer(s): Dr Chrissen Gemmill and Dr Michael Clearwater
Prerequisite(s): BIOL102
Assessment: Internal assessment/examination ratio: 1:1

BIOL226-17T (HAM) – Flora of Aotearoa/New Zealand 20 points
A paper for students interested in New Zealand’s native and naturalised flora, with emphasis on identification of plants and plant systematics. A three-day field trip will be held as part of this paper.
At the end of this paper students will be familiar with all the major elements of the New Zealand flora, and will be able to work with any modern flora to key out and identify plants from the scientific literature. The paper will normally be taught entirely over two weeks.
Lecturer(s): Dr Chrissen Gemmill and Dr Michael Clearwater
Assessment: Internal assessment/examination ratio: 1:0

BIOL227 – Flora of the Pacific 20 points
This paper will not be offered in 2017.

BIOL234-17A (HAM) (TGA) – Functional Animal Biology 20 points
This paper is an integrated theoretical and experimental study of the principles of animal physiology. Comparative aspects will be emphasised in how animals adapt to their environment, including selected topics in ecophysiology. Topics covered include the physiology of nerve and muscle, chemical communication and senses, animal locomotion, respiration, circulation, osmoregulation and thermoregulation. An introduction to animal behaviour will include lectures on orientation and navigation, visual and auditory communication, mating systems and other aspects of social behaviour.
Lecturer(s): Associate Professor Nick Ling and Dr Clare Browne
Prerequisite(s): BIOL102
Assessment: Internal assessment/examination ratio: 1:1

BIOL235-17B (HAM) – Biomedical and Molecular Physiology 20 points
An introduction to human and mammalian biology. Topics covered include the tissues and organs of the body; the structure and functioning of the nervous system and the endocrine system; digestion, respiration, circulation; the immune system; reproduction and development. Health and social issues will be considered.
This paper provides a base for the third-year paper BIOL335.
Lecturer(s): Dr Pawel Olszewski, Dr Steve Bird and Dr Linda Peters
Prerequisite(s): BIOL101 or BIOL102
Assessment: Internal assessment/examination ratio: 2:3
BIOL241-17A (HAM) – Microbiology 20 points
This paper deals almost wholly with bacteria. Its aim is to provide insight into their structure, how they are classified, how they grow and some account of their very diverse physiologies. Structure and physiology are discussed in relation to the role of bacteria in nature and how various methods (such as the use of antibiotics) may be used to control their growth.

The paper is a prerequisite for BIOL341, and can be seen as complementary to the genetics, biochemistry and biotechniques papers.

Lecturer(s): Associate Professor Ian McDonald and Dr Charles Lee
Prerequisite(s): BIOL101; (BIOL102 is recommended)
Restriction(s): ENMP325
Required book(s): Madigan et al Brock’s Biology of Microorganisms 14th ed (Prentice-Hall)
Assessment: Internal assessment/examination ratio: 1:1

BIOL251-17A (HAM) – Biochemistry 20 points
The aim of this introductory paper is to familiarise students with most aspects of biochemistry, including the structure and function of proteins and enzymes, energy-yielding metabolism and the biochemical basis of nutrition and the functioning of hormones. An emphasis is placed on the relevance of biochemistry to understanding what is going on within and around you and the paper is seen as serving the needs of all biologists and of those chemists intending to work in primary production industries. This paper is strongly recommended for all students with an interest in biotechnology, molecular genetics, or plant, animal or microbial physiology.

Lecturer(s): Dr Ryan Martinus and Professor Vic Arcus
Prerequisite(s): BIOL101 and 15 points at level 100 Chemistry
Assessment: Internal assessment/examination ratio: 1:1

ENMP222-17B – Biotechnology: Food and Bioresources 20 points
This paper is delivered jointly by the School of Science and the School of Engineering. It introduces biotechnology, microbiology and processing of bioproducts, composition and processing of selected foods, and food processing. There is a compulsory laboratory component offered. Subject to sufficient enrolments.

Co-ordinator(s): Professor Janis Swan and Associate Professor Ian McDonald
Prerequisite(s): BIOL101 and a further 15 points at 100 level from Biological Sciences, Chemistry, Engineering or Materials and Processing
Assessment: Internal assessment/examination ratio: 1:1
300 level papers

BIOL310-17A (HAM) – Advanced Genetics 20 points
This paper follows on from BIOL210 and deals in greater detail with both the molecular and whole organism aspects of genetics. Throughout the paper there will be an emphasis on the application of genetic knowledge; on the one hand in the direction of genetic engineering and genetic analysis and on the other hand in the study of population genetics.

The paper is recommended to all biologists; it complements papers both in the evolutionary areas of biology as well as those in the metabolic and biotechnological.

Lecturer(s): Dr Ray Cursons, Dr Linda Peters, Dr Steve Bird and Professor Vic Arcus
Prerequisite(s): BIOL210
Assessment: Internal assessment/examination ratio: 1:1

BIOL312-17A (HAM) (TGA) – Applied Terrestrial Ecology 20 Points
A course that explores ecological principles, ecosystem dynamics and functioning, restoration, conservation genetics, conservation ecology, forest ecosystems, pest control and protection of native species.

Lecturer(s): Dr Chris Lusk and Professor Carolyn King
Prerequisite(s): BIOL212
Assessment: Internal assessment/examination ratio: 3:2

BIOL313-17B (HAM) (TGA) – Applied Freshwater Ecology 20 points
This paper is an introduction to the applied ecology of freshwater communities (limnology). It deals with both the physical and chemical environments of lakes and rivers, as well as with the various plant and animal communities found in these habitats. The variety and ways of life of freshwater organisms and the factors governing their populations are examined. Freshwater ecosystems are often affected by human activities and so the paper also deals with the effects of land use, lake management, and management of stream habitats.

Lecturer(s): Associate Professor Ian Hogg, Professor Brendan Hicks, Dr Ian Duggan, Professor David Hamilton and Associate Professor Kevin Collier
Prerequisite(s): BIOL212
Assessment: Internal assessment/examination ratio: 1:1

BIOL314-17A (HAM) (TGA) – Marine Biology and Monitoring 20 points
This paper deals with the ecology of marine organisms, focusing particularly on events at the individual, assemblage and population level. A wide range of habitats is considered, in order to stress the diverse nature of the marine environment. There is also an emphasis on detecting change due to human activities on marine systems, including fisheries. As a consequence, statistics of ecological surveys and experiments are an integral part of the paper.

Lecturer(s): Professor Conrad Pilditch, Professor Brendan Hicks and Professor Chris Battershill
Prerequisite(s): BIOL212; (BIOL201 is recommended)
Assessment: Internal assessment/examination ratio: 1:1
BIOL324-17B (TGA) Aquaculture Reproduction and Early Life Stages 20 points
Students will study the underlying reproductive physiology and developmental biology of early life cycle strategies used by aquatic animal species. This knowledge will be examined for its use in the husbandry, breeding and production of species in aquaculture. This paper is only available to Tauranga students.

Lecturer(s): Professor Chris Battershill (University of Waikato) and Dr Simon Muncaster (Bay of Plenty Polytechnic)
Prerequisite(s): Aquaculture 1, Aquaculture 2, Diploma in Marine Studies Bay of Plenty Polytechnic or BIOL234 University of Waikato
Assessment: Internal assessment/examination ratio: 3:2

BIOL325-17A (HAM) – Plant Function 20 points
This paper provides an introduction to the discipline of plant physiological ecology. Participants will gain an understanding of how plants interact with their environment as they grow and reproduce, using examples from both natural vegetation and managed agricultural environments. Practical work will emphasise laboratory and field techniques for measuring plant performance, including measurements of microclimate, photosynthesis and water use.

Lecturer(s): Dr Michael Clearwater, Dr Nick Gould and Dr Chris Lusk
Prerequisite(s): BIOL223
Assessment: Internal assessment/examination ratio: 1:1

BIOL326 – Advanced Topics in Plant Biology 20 points
This paper will not be offered in 2017.

BIOL333-17B (HAM) – Advanced Animal Behaviour 20 points
This paper provides an up-to-date review of issues in the field of animal behaviour. We examine the development, causation, function and evolutionary history of vertebrate and invertebrate behaviour.

Lecturer(s): Dr Clare Browne, Dr Pawel Olszewski, Professor Carolyn King and contributors from Landcare, AgResearch and InterAg.
Prerequisite(s): BIOL234
Assessment: Internal assessment/examination ratio: 1:1

BIOL335-17A (HAM) – Mammalian Physiology 20 points
This paper is an integrated theoretical and experimental study of selected aspects of the physiology of mammals. The paper follows on from Functional Animal Biology (BIOL234) and Humans and Other Mammals (BIOL235) and deals with topics not covered in these papers as well as some of the same topics in more depth. The paper is concerned with mammalian physiology, in particular covering areas of applied research in mammalian physiology and including neurophysiology and the physiology of behaviour, immunology, muscle growth and development, reproduction and lactation.

Lecturer(s): Associate Professor Nick Ling, Dr Pawel Olszewski and Dr Steve Bird
Prerequisite(s): BIOL234 or BIOL235; (BIOL251 is recommended)
Assessment: Internal assessment/examination ratio: 1:1
BIOL338-17B (HAM) – Advanced Zoology 20 points
This paper looks at selected topics in evolutionary zoology, with particular emphasis on the dominant invertebrate and vertebrate groups.
This paper is complementary to BIOL335 and BIOL333.
Lecturer(s): Professor Carolyn King and Associate Professor Ian Hogg
Prerequisite(s): BIOL201 or BIOL234
Assessment: Internal assessment/examination ratio: 1:1

BIOL341-17B (HAM) – Microbial Physiology and Ecology 20 points
This paper looks at the great metabolic diversity of bacteria and their ability to respond to fluctuating and extreme environments. Emphasis will be placed on the unifying principles and the relationship of bacterial physiology to the taxonomy and ecology of archaea bacteria and eubacteria. The role of adhesion will be discussed leading to the importance of bacterial biofilms and the metabolic interactions that occur within these consortia. Bacterial phylogeny will be used to introduce new methods of molecular ecology.
Lecturer(s): Associate Professor Ian McDonald and Dr Charles Lee
Prerequisite(s): BIOL241
Required book(s): Madigan et al Brock’s Biology of Microorganisms 14th ed (Prentice-Hall)
Assessment: Internal assessment/examination ratio: 1:1

BIOL351-17B (HAM) – Advanced Biochemistry 20 points
This paper is targeted at students interested in biochemistry, plant and animal physiology, biotechnology, genetics, microbiology and chemistry. We will build upon the principles of biochemistry introduced in BIOL251 to:
1. Examine the molecular mechanisms underlying cellular communication and trafficking of proteins between organelles, cellular stress responses and cell death.
2. Consider metabolic regulation in relation to the control of enzyme stability and activity as well as human diseases (eg diabetes).
3. Specific topics illustrating a variety of other aspects of biochemistry such as mammalian vision, toxicology and inflammation will also be presented. Students will also be required to evaluate and present recent findings in biochemistry and molecular cell biology as part of the directed study section of the course.
Lecturer(s): Dr Ryan Martinus and Professor Vic Arcus
Prerequisite(s): BIOL251
Assessment: Internal assessment/examination ratio: 1:1

BIOL362-17C (BLK) (HAM) – Molecular Biology and Biotechniques 20 points
This online course will examine the molecular biological technologies used to analyse and manipulate DNA, RNA and proteins. It includes coverage of the major recombinant DNA techniques, during an intensive two week course.
This paper is strongly recommended to students doing BIOL351 or BIOL310, or intending to work in the fields of molecular genetics, biochemistry or biomedical research.
Lecturer(s): Dr Ray Cursons, Dr Linda Peters, Professor Vic Arcus and Dr Steve Bird
Prerequisite(s): BIOL210
Assessment: Internal assessment/examination ratio: 1:0

ENMP322-17B (HAM) – Biotechnology 20 points
For details see Materials and Processing ENMP322.
Chemistry

100 level papers

CHEM100-17A (HAM) (TGA) – Chemistry in Context 15 Points
An introductory course assuming minimal chemistry background for students who are non-chemistry majors. Students with 16 or more credits in NCEA level 3 Chemistry are encouraged to take CHEM111 instead. An emphasis is made to place the chemical concepts taught in the course within the broader context of the world around us.

Lecturer(s): Dr Joseph Lane
Restriction(s): CHEM101, CHEM102, CHEM111, CHEM112
Book(s): CHEM 2: Chemistry in Your World 2nd ed (Cengage) (Recommended)
Assessment: Internal assessment/examination ratio: 3:2

CHEM106 – Chemical Hazards: Safety and Legislation 15 points
This paper will not be offered in 2017.

CHEM111-17A (HAM) (SEC) – Structure and Spectroscopy 15 points
A theoretical and practical course covering aspects of analytical and inorganic chemistry. This course is required for the Chemistry major.

Lecturer(s): Professor Bill Henderson and Associate Professor Merilyn Manley-Harris
Prerequisite(s): 16 credits at level 3 NCEA Chemistry or equivalent
Assessment: Internal assessment/examination ratio: 1:1

CHEM111-17T (HAM) – Structure and Spectroscopy 15 points
A theoretical and practical course covering aspects of analytical and inorganic chemistry. This occurrence of the paper is offered to students who passed CHEM100 and want to enrol in CHEM211-CHEM214, which are required for the Chemistry major.

Assessment: Internal assessment/examination ratio: 1:0

CHEM112-17B (HAM) (SEC) – Chemical Reactivity 15 points
A theoretical and practical course covering aspects of physical and organic chemistry. This course is required for the Chemistry major.

Lecturer(s): Associate Professor Michael Mucalo and Associate Professor Merilyn Manley-Harris
Prerequisite(s): 16 credits at level 3 NCEA Chemistry or equivalent or passed CHEM100
Recommended book(s): Brown et al Chemistry the Central Science (Prentice Hall)
Assessment: Internal assessment/examination ratio: 1:1
200 level papers

CHEM200-17B (HAM) – Analytical Tools for the Life and Environmental Sciences 20 points
A largely practical paper for students in the life and environmental sciences who require an understanding of the abilities and limitations of chemical analysis in their fields of study.

Lecturer(s): Dr Mohamed Rishard and Professor Bill Henderson
Prerequisite(s): CHEM100
Restrictions(s): CHEM111 and CHEM204
Assessment: Internal assessment/examination ratio: 1:0

CHEM211-17A (HAM) – Analytical and Inorganic Chemistry 1 20 points
A theoretical paper covering aspects of analytical and inorganic chemistry.

Lecturer(s): Professor Bill Henderson, Associate Professor Graham Saunders, Associate Professor Merilyn Manley-Harris and Associate Professor Michèle Prinsep
Prerequisite(s): CHEM111
Assessment: Internal assessment/examination ratio: 1:1

CHEM212-17B (HAM) – Organic and Physical Chemistry 1 20 points
A theoretical paper covering aspects of organic and physical chemistry.

Lecturer(s): Associate Professor Michael Mucalo, Associate Professor Merilyn Manley-Harris, and Associate Professor Michèle Prinsep
Prerequisite(s): CHEM112
Assessment: Internal assessment/examination ratio: 1:1

CHEM213-17A (HAM) – Analytical and Inorganic Chemistry Laboratory 1 10 points
A laboratory based paper covering aspects of analytical and inorganic chemistry.

Lecturer(s): Associate Professor Merilyn Manley-Harris, Associate Professor Michèle Prinsep, Professor Bill Henderson and Associate Professor Graham Saunders
Corequisite(s): CHEM211
Assessment: Internal assessment/examination ratio: 1:0

CHEM214-17B (HAM) – Organic and Physical Chemistry Laboratory 1 10 points
A laboratory based paper covering aspects of organic and physical chemistry.

Lecturer(s): Associate Professor Michael Mucalo, Associate Professor Merilyn Manley-Harris, Associate Professor Michèle Prinsep and Dr Mohamed Rishard
Corequisite(s): CHEM212
Assessment: Internal assessment/examination ratio: 1:0
CHEM261-17A (HAM) – Environmental Chemistry and Geochemistry 20 points
This paper is designed to give students in chemistry, earth sciences and biological sciences an understanding of the chemistry of our environment. The composition of the earth, particularly its atmosphere and hydrosphere, and its derivation from the solar system, will be examined. Concepts of residence times, fluxes and geochemical cycles will be introduced. The features that make the Earth unique among the known planets, and habitable, especially the importance of oxygen, carbon dioxide, photosynthesis and respiration form an important part of this paper. Atmospheric processes to be examined include carbon dioxide and the greenhouse effect, acid rain and the sulphur cycle, and photochemistry.

Students undertake one day of field-work and five three-hour laboratory sessions.

Lecturer(s): Dr Adam Hartland and Professor Bill Henderson
Prerequisite(s): 15 points at level 1 Chemistry and 15 points at level 1 Earth Sciences
Assessment: Internal assessment/examination ratio: 1:0

300 level papers

CHEM311-17B – Analytical and Inorganic Chemistry 2 20 points
A theoretical paper covering advanced aspects of analytical and inorganic chemistry.

Lecturer(s): Professor Bill Henderson, Associate Professor Merilyn Manley-Harris, Associate Professor Graham Saunders, Associate Professor Michèle Prinsep
Prerequisite(s): CHEM211
Assessment: Internal assessment/examination ratio: 1:1

CHEM312-17A (HAM) – Organic and Physical Chemistry 2 20 points
A theoretical paper covering advanced aspects of organic and physical chemistry.

Lecturer(s): Associate Professor Merilyn Manley-Harris, Associate Professor Michèle Prinsep, Associate Professor Michael Mucalo and Dr Mohamed Rishard
Prerequisite(s): CHEM212
Assessment: Internal assessment/examination ratio: 1:1

CHEM313-17B – Analytical and Inorganic Chemistry Laboratory 2 10 points
A laboratory based paper covering advanced aspects of analytical and inorganic chemistry.

Lecturer(s): Professor Bill Henderson, Associate Professor Merilyn Manley-Harris, Associate Professor Graham Saunders and Associate Professor Michèle Prinsep
Prerequisite(s): CHEM213
Corequisite: CHEM 311
Assessment: Internal assessment/examination ratio: 1:0

CHEM314-17A (HAM) – Organic and Physical Chemistry Laboratory 2 10 points
A laboratory based paper covering advanced aspects of organic and physical chemistry.

Lecturer(s): Associate Professor Merilyn Manley-Harris, Associate Professor Michèle Prinsep, Associate Professor Michael Mucalo and Dr Mohamed Rishard
Prerequisite(s): CHEM214
Corequisite: CHEM 312
Assessment: Internal assessment/examination ratio: 1:0

CHEM361-17A (HAM) – Applied Environmental Geochemistry 20 points
This paper will not be offered in 2017.
Civil Engineering

200 level papers

ENCV220-17A (HAM) – Mechanics of Materials 20 points
The basics of force and stress analyses used in engineering design. The essential aspects of designing structures subject to axial, bending and torsional loads are introduced.

Co-ordinator(s): Dr Ali Khajeh Samani
Prerequisite(s): ENGG110 and MATH101
Corequisite(s): ENCV205
Assessment: Internal assessment/examination ratio: 3:2

ENCV221-17B (HAM) – Introduction to Structural Design and Loads 10 points
An introduction to structures, such as buildings and bridges, and the impact of wind and earthquake loading; an introduction to timber structure design.

Co-ordinator(s): Dr Ali Khajeh Samani
Prerequisite(s): ENCV220
Assessment: Internal assessment/examination ratio: 1:0

ENCV230-17A (HAM) – Geomechanics 10 points
This course provides students with the fundamentals of geomechanical engineering in preparation for ENCV330.

Co-ordinator(s): TBA
Prerequisite(s): ERTH103 and ENMP102
Assessment: Internal assessment/examination ratio: 3:2

ENCV240-17B (HAM) – Fluid Mechanics 1 10 points
This paper provides students with fundamental properties of fluid mechanics.

Co-ordinator(s): Associate Professor Michael Walmsley
Prerequisite(s): ENGG180 and ENCV250
Assessment: Internal assessment/examination ratio: 1:0

ENCV250-17A (HAM) – Civil Engineering Modelling 20 points
This paper covers mathematical applications in engineering problems. It also introduces modelling and drawings in engineering.

Co-ordinator(s): Dr Nick Cavenagh
Prerequisite(s): MATH101 and MATH102
Required books(s): Advanced Engineering Mathematics, E Kreyszig
Assessment: Internal assessment/examination ratio: 3:2
ENCV260-17A (HAM) – Civil Materials 10 points
An understanding of the fundamental properties of civil engineering materials in preparation for civil engineering design.

Co-ordinator(s): Prof Kim Pickering
Prerequisite(s): ENGG180
Corequisite(s): ENCV220
Assessment: Internal assessment/examination ratio: 3:2

ENCV280-17A (HAM) – Construction Engineering 20 points
This paper gives an understanding to construction methods in civil and environmental engineering fields as well as an introduction to construction management, contract and safety.

Co-ordinator(s): TBA
Restriction(s): ENGG282, ENMP282
Assessment: Internal assessment/examination ratio: 1:0

ENMP241-17B (HAM) – Environmental Technology 1 20 points
For details, see ENMP241 Materials and Processing.
Earth Sciences

100 level papers

ERTH103-17B (HAM) – Discovering Planet Earth 15 points
A lecture and laboratory paper that explores the Earth's interior and its dynamic interaction with the crust. Topics covered include the major rocks and minerals and their economic importance; interpreting the rock record and geologic maps; the geological time scale and fossils; rock deformation; plate tectonics; volcanism; earthquakes; the New Zealand geological environment. A one-day field trip will be run introducing students to aspects of Earth Sciences.

Lecturer(s): Dr Adrian Pittari, Dr Shaun Barker and Dr Beth Fox
Tutor(s): Dr Hazel Needham
Recommended book(s): I. J. Graham (Chief ed.) A Continent on the Move: New Zealand Geoscience Revealed, 2nd edition (Geological Society of NZ)
Required reading: ERTH103 Study Guide
Assessment: Internal assessment/examination ratio: 1:1

ERTH104-17A (HAM) – Earth and Ocean Environments 15 points
A lecture and laboratory paper that explores the processes operating in the terrestrial and ocean environments, and the resulting deposits and landforms. Topics covered include oceanography; coastal hazards and climate change; the hydrological cycle; rivers and groundwater; glaciers; weathering; erosion and mass movement; and soil formation. A one-day field trip will be run introducing students to the physical environment of the Waikato-Raglan district.

Lecturer(s): Dr Megan Balks, Associate Professor David Campbell and Dr Willem de Lange
Tutor(s): Dr Hazel Needham
Required book(s): ERTH104 Study Guide
Assessment: Internal assessment/examination ratio: 1:1

ERTH221-17B (HAM) – Earth Materials and Processes 20 points
In this paper the nature and significance of Earth materials are studied, and particularly the processes and products of volcanism and sedimentation. Students learn the methods of describing and identifying the common minerals and rocks of the Earth's crust. There is an emphasis on laboratory work which covers introductory crystallography, optical mineralogy using petrographic microscopes, igneous, metamorphic, and sedimentary petrography, grain-size analysis, and detrital mineralogy.

It is strongly advised that this paper is taken in conjunction with ERTH222. A background in first-year chemistry is advisable, but is not essential.

Lecturer(s): Dr Adrian Pittari, Dr Shaun Barker and Dr Beth Fox
Prerequisite(s): ERTH103 and one of ERTH104, ENVS101, GEOG103
Recommended book(s): Francis and Oppenheimer Volcanoes (Oxford); Winter Principles of Igneous and Metamorphic Petrology (Prentice Hall); Boggs Jr Principles of Sedimentology and Stratigraphy (Merrill); Prothero and Schwab Sedimentary Geology: an Introduction to Sedimentary Rocks and Stratigraphy (W.H.Freeman)
Assessment: Internal assessment/examination ratio: 1:1
ERTH222-17A (HAM) – Stratigraphy, Structure and Field Methods 20 points
This paper teaches students field methods in Earth Sciences related to the description, mapping and structural interpretation of rock sequences underlying land surfaces. It is the principal paper at second-year level that gives students experience in fieldwork. Topics covered are stratigraphic procedures; field mapping and map interpretation; introduction to analysis of geological structures; report writing; and computer graphics for Earth science applications. The paper includes a field camp at Port Waikato, where students undertake section descriptions and mapping exercises. This is followed by training in, and the completion of, a compulsory report on the fieldwork.

Lecturer(s): Dr Shaun Barker, Dr Beth Fox
Prerequisite(s): ERTH103 and one of ERTH104, ENVS101 or GEOG103
Recommended book(s): Boggs Jr Principles of Sedimentology and Stratigraphy (Merrill);
Prothero et al Sedimentary Geology – An Introduction to Sedimentary Rocks and Stratigraphy (Freeman)
Assessment: Internal assessment/examination ratio: 3:2

ERTH233-17A (HAM) – Soils in the Landscape 10 points
Soils are New Zealand’s most important natural resource: they sustain life, sequester carbon, and provide many essential ‘services’ and functions. ERTH233 is an introductory paper on the nature and formation of soils and their place in the landscape, their classification, distribution pattern and use as a finite resource in New Zealand. Two fieldtrips (half day, one day) examining the properties and origins of soils in the Waikato region are undertaken. The paper is a partner to ERTH234.

Lecturer(s): Professor David Lowe
Prerequisite(s): Any two of ERTH103, ERTH104, ENVS101 or GEOG103
Restriction(s): ERTH231
Required book(s): Clayden and Hewitt Horizon Notation for New Zealand Soils (Manaaki Whenua Press)
Recommended book(s): Molloy Soils in the New Zealand Landscape 2nd ed (NZ Society of Soil Science)
Assessment: Internal assessment/examination ratio: 1:1

ERTH234-17A (HAM) – Soil Properties and their Management 10 points
This paper is an introduction to the physical, chemical, mineralogical, and biological properties of soils including analysis and interpretation using laboratory methods, and issues of soil quality, land degradation and sustainable management. The paper is a partner to ERTH233.

Lecturer(s): Professor Louis Schipper and Dr Tanya O’Neill
Prerequisite(s): Any two of ERTH103, ERTH104, ENVS101 or GEOG103
Restriction(s): ERTH231
Assessment: Internal assessment/examination ratio: 1:1
ERTH242-17B (HAM) – Oceanography 20 points
New Zealand has the fourth largest Exclusive Economic Zone in the world, which creates a demand for graduates with good understanding of oceanography. The paper is largely an introduction to physical oceanography and examines the nature and origin of the oceans; the currents, waves, and circulation patterns found in the oceans; and ocean/climate interactions such as ENSO events. Additional topics include paleoceanography; oceanographic instrumentation and technology; marine resources and management; productivity, energetics and fisheries; and oceanography of the New Zealand Exclusive Economic Zone.

This paper is suitable for all students with an interest in some aspect of marine sciences, and should provide a basic grounding in oceanography which is not normally available elsewhere in a single course until masters-level papers.

Lecturer(s): Dr Julia Mullarney, Dr Willem de Lange and Associate Professor Karin Bryan
Prerequisite(s): Any two of ERTH103, ERTH104, ENVS101 or GEOG103
Recommended book(s): Garrison Oceanography
Assessment: Internal assessment/examination ratio: 1:1

ERTH245-17A (HAM) – Weather and Climate 10 points
An introduction to atmospheric processes, including meteorology of the New Zealand region, precipitation processes, energy exchanges within the hydrosphere, and microclimatology, with emphasis on the role of water in climate processes.

Lecturer(s): Associate Professor David Campbell
Prerequisite(s): Any two of ERTH103, ERTH104, ENVS101 or GEOG103
Required book(s): ERTH245 Study Guide
Restriction(s): ERTH241
Assessment: Internal assessment/examination ratio: 1:1

ERTH246-17B (HAM) – Introduction to Hydrology 10 points
An introduction to the land component of the hydrological cycle and associated human modifications. Topics include introduction to groundwater, fluvial processes and landforms, catchment hydrology and hydro power evaluation.

Lecturer(s): Associate Professor Earl Bardsley
Prerequisite(s): Any two of ERTH103, ERTH104, ENVS101 or GEOG103
Restriction(s): ERTH241
Assessment: Internal assessment/examination ratio: 1:1

ERTH251-17B (HAM) – Engineering Geomorphology 10 points
Landslides are a significant natural hazard in New Zealand, causing frequent damage to homes and disruption of lifelines each year. This paper introduces students to the study of landslides, including discussion of the nature of landslide processes, geomorphic evidence for landslides, and assessment of associated hazards. Field and laboratory work focuses on basic mapping and surveying techniques for slopes, air photograph interpretation and geomorphic map preparation.

Lecturer(s): Dr Vicki Moon
Prerequisite(s): Any two of ERTH103, ERTH104, ENVS101 or GEOG103
Assessment: Internal assessment/examination ratio: 1:1
ERTH284-17B (HAM) – Introduction to Environmental Monitoring 10 points
This paper introduces students to aspects of environmental monitoring within the New Zealand resources management framework and includes principles of environmental monitoring as applied to a range of environments in the Waikato Region; sampling strategies; and data interpretation. Practical exercises concentrate on specific skills in the acquisition and interpretation of environmental data, including undertaking field surveys; sampling of earth materials; sample management and analysis; report presentation and communication of results.

Lecturer(s): Dr Vicki Moon, Dr Megan Balks and guest lecturers from Waikato Regional Council
Prerequisite(s): Any two of ENVS101, ERTH103, ERTH104 or GEOG103
Restriction(s): ENVP308
Assessment: Internal assessment/examination ratio: 1:1

300 level papers

ERTH321-17A (HAM) – Volcanology 20 points
Volcanism is the fundamental geological process shaping our planet, one that provides abundant resources for society while also posing significant hazards. This paper explores the nature, dynamics and significance of all types of volcanoes and volcanic processes, and examines the magmatic systems that feed volcanoes. Topics covered include properties of magma, lava flows, explosive eruption mechanisms and emplacement processes, volcano monitoring, origin of magmas, crystallisation of rock-forming minerals and phase equilibria, petrology and trace element geochemistry of volcanic rocks, and geothermal and mineral resources.

The paper includes a two-day field trip to Taupo and Tongariro to examine some world-class volcanoes and volcanic deposits.

Lecturer(s): Dr Adrian Pittari and Dr Shaun Barker
Prerequisite(s): ERTH221 (ERTH222 is strongly recommended)
Assessment: Internal assessment/examination ratio: 3:2

ERTH322-17B (HAM) – Sedimentary and Petroleum Geology 20 points
This paper describes various types of sedimentary basins in terms of their plate tectonic setting, and looks at the different controls on sedimentation. It offers an integrated lecture-lab segment on principles and application of sequence stratigraphy which involves the interpretation of oil exploration acquired seismic reflection profiles. The concept of sedimentary facies is emphasised, particularly those criteria used for interpreting the depositional environments of ancient sedimentary rock sequences. New Zealand examples are used throughout the paper. Laboratory work includes facies analysis and mapping, microfossil analysis, thin-section petrography, X-ray diffraction techniques, and there is a three-day geology field trip to northern Taranaki, based at Awakino, and an associated compulsory report.

This paper leads on from ERTH221 and ERTH222 and it may be considered a partner to ERTH321.

Lecturer(s): Dr Beth Fox and Dr Rochelle Hansen
Prerequisite(s): ERTH222 (ERTH221 is strongly recommended)
Recommended book(s): Nichols, Sedimentology and Stratigraphy; Catuneanu, Principles of Sequence Stratigraphy; Boggs Jr, Principles of Sedimentology and Stratigraphy (Merrill)
Assessment: Internal assessment/examination ratio: 3:2
ERTH333-17A (HAM) – Pedology and Land Evaluation 10 points
This paper examines soil genesis and spatial variability, quantitative soil survey and soil-landscape modelling, soil taxonomy, and the interpretation of soil and land data in a form applicable to land-use planning and management. This paper, which follows on from ERTH233, is a partner to ERTH334.

Lecturer(s): Professor David Lowe
Prerequisite(s): ERTH233
Restriction(s): ERTH331
Recommended book(s): Schaetzl and Anderson Soils: Genesis and Geomorphology 2nd ed (Cambridge University Press); Milne et al Soil Description Handbook 2nd ed (Manaaki Whenua Press)
Assessment: Internal assessment/examination ratio: 3:2

ERTH334-17B (HAM) – Soil and Land Management 10 points
Analysis and interpretation of soil properties relating to land and environmental management, soil fertility, soil water management, land treatment of wastes, soil degradation and remediation, soil nitrogen and phosphorus cycling. This paper, which follows on from ERTH234, is a partner to ERTH333.

Lecturer(s): Professor Louis Schipper and Dr Megan Balks
Prerequisite(s): ERTH234
Restriction(s): ERTH331
Assessment: Internal assessment/examination ratio: 3:2

ERTH343-17B (HAM) (TGA) – Coastal Geomorphology and Management 20 Points
The paper focuses on understanding of coastal processes, sediments and evolution of coastal landforms as a basis for coastal management. Topics covered include beach sediments and processes, coastal erosion, and littoral, tidal flats, tidal inlets, estuaries, dunes, rocky shorelines; semiquantitative methods for coastal hazard analysis and tidal inlet stability; coastal planning issues relating to the RMA (1991); sea-level rise impacts, dredging and spoil dispersion, port and marina developments, and methods of coastal protection.

There will be a one-day field trip to examine aspects of coastal geomorphology processes and management.

Lecturer(s): Dr Willem de Lange and Associate Professor Karin Bryan
Prerequisite(s): 40 points from 200 level Earth Sciences or approved Geography papers
Recommended books: Komar Beach Processes and Sedimentation 2nd ed (Prentice-Hall) 1998; Middleton Data Analysis in the Earth Sciences Using Matlab (Prentice-Hall)
Assessment: Internal assessment/examination ratio: 3:2

ERTH344-17A (HAM) – Coastal Oceanography and Engineering 20 points
This paper focuses on physical oceanography of the coastal zone. Topics include methodologies for quantifying processes and coastal responses; evaluation of design conditions for coastal engineering; and application of numerical models for simulating coastal processes. This paper, which follows on from ERTH242, includes a one-day field trip.

Lecturer(s): Associate Professor Karin Bryan and Dr Julia Mullarney
Prerequisite(s): ERTH242 or ERTH245
Recommended book(s): Komar Beach Processes and Sedimentation 2nd ed (Prentice-Hall) 1998; Middleton Data Analysis in the Earth Sciences Using Matlab (Prentice-Hall)
Assessment: Internal assessment/examination ratio: 3:2
ERTH345-17A (HAM) – Catchment Hydrology 10 points
Measurement, analysis and modelling of surface hydrological processes at the catchment scale, emphasizing precipitation, river flow, evaporation, interception loss and hillslope runoff processes. This paper is a partner to ERTH346.

Lecturer(s): Associate Professor David Campbell
Prerequisite(s): ERTH245 or ERTH246
Restriction(s): ERTH341
Assessment: Internal assessment/examination ratio: 3:2

ERTH346-17B (HAM) – Freshwater Resources and Hazards 10 points
Overview of freshwater resources and their analysis, with some emphasis on groundwater resources; introduction to hydrological hazards including flood hazard analysis and river contamination modelling. This paper is a partner to ERTH345.

Lecturer(s): Associate Professor Earl Bardsley
Prerequisite(s): ERTH246 or ERTH245
Restriction(s): ERTH341
Assessment: Internal assessment/examination ratio: 3:2

ERTH352-17A (HAM) – Engineering Geology 10 points
Engineering geological input to geotechnical assessment is essential to allow recognition, avoidance and mitigation of hazards associated with weak earth materials and slope instability. In this paper key topics in engineering geology are introduced, including an examination of the physical properties of soil and rock materials, key laboratory tests in geomechanics, and slope instability assessment and mitigation. A one-day field trip concentrates on methods for developing engineering geological models and an introduction to slope monitoring tools.

Lecturer(s): Dr Vicki Moon
Prerequisite(s): ERTH251
Assessment: Internal assessment/examination ratio: 3:2

ERTH384-17B (HAM) – Advanced Environmental Monitoring 10 points
This paper has focus on detecting and quantifying change in the natural environment. A source-to-sea theme is included, with topics incorporating catchment hydrology, soil and land use patterns, sedimentation and nutrient inputs to estuaries. Techniques covered include simple modelling, statistical methods and field survey analysis.

Lecturer(s): Dr Julia Mullarney, Associate Professor Earl Bardsley and Dr Megan Balks
Prerequisite(s): 40 points from 200 level Earth Sciences or approved Geography papers
Assessment: Internal assessment/examination ratio: 3:2
Electronics

100 level papers

ENEL111-17A/T (HAM) – Introduction to Electronics 15 Points
This paper covers basic electronic concepts. Topics include circuit theory, Thevenin's theorem, resistors, capacitors, inductors and power sources, diodes, amplifiers, feedback, logic circuits, analog-to-digital and digital-to-analog conversion.

Co-ordinator(s): Dr Marcus Wilson
Prerequisite(s): 14 credits at level 3 in NCEA Physics
Corequisite(s): Students who intend to continue in Physics or Electronics are also recommended to enrol in MATH101
Required book(s): To be advised
Assessment: Internal assessment/examination ratio: 1:0

200 level papers

COMP200-17A (HAM) – Computer Systems 10 points
For details refer to the Faculty of Computing & Mathematical Sciences Handbook.

ENEL205-17B (HAM) – Analog Electronics and Circuit Analysis 20 points
This paper covers design and analysis of analog electronic circuits. Topics include ac circuit analysis, nodal analysis, Laplace Transforms, BJT amplifier circuits and their equivalent circuits, frequency response. Feedback, output stages, oscillators, operational amplifiers and their limitations, active filters, using PSPICE. This paper includes a laboratory component.

Co-ordinator(s): Dr Michael Cree
Prerequisite(s): ENEL111
Assessment: Internal assessment/examination ratio: 1:1

ENEL212-17A (HAM) – Electronics for Digital Systems 10 points
This paper covers the theory, design and applications of logic circuits and technology related to digital systems.

Co-ordinator(s): Dr Michael Cree
Prerequisite(s): COMP104 or ENEL111
Assessment: Internal assessment/examination ratio: 1:1

ENEL213-17A (HAM) – Instrumentation 10 points
This paper covers the design of analogue and digital instrumentation to measure electrical parameters and the design and use of sensors.

Co-ordinator(s): Associate Professor Nihal Kularatna
Prerequisite(s): ENEL111
Assessment: Internal assessment / examination ratio: 1:0
ENEL284-17B (HAM) – Electricity and Magnetism 10 points
This paper teaches principles of electromagnetism relevant to engineering. It covers fundamental theory of electric and magnetic fields.

Co-ordinator(s): Professor Moira Steyn-Ross
Prerequisite(s): PHYS103 and ENEL111
Corequisite(s): either ENGG285 or MATH251, and either ENGG283 or MATH253, and either ENGG284 or MATH255
Restriction(s): ENEL281, PHYS201 and PHYS304
Assessment: Internal assessment/examination ratio: 1:2

ENEL285-17A (HAM) – Quantum and Solid State Physics 10 points
This paper teaches principles of modern physics relevant to engineering. It covers introductory quantum mechanics, atomic and semiconductor physics.

Co-ordinator(s): Dr Michael Cree
Prerequisite(s): PHYS103 and ENGG184 or MATH101
Restriction(s): ENEL281, PHYS202 and PHYS304
Recommended book(s): Krane Modern Physics 3rd ed 2012
Assessment: Internal assessment/examination ratio: 1:2

300 level papers

COMP311-17B (HAM) – Computer Systems Architecture 20 points
This paper explains the inner workings of CPUs. The paper covers the following topics in detail: CPU System Components and ALU Internals; Single Cycle, Multicycle and Pipelined ISA Architectures; Cache and Memory hierarchies; Multicore Data Synchronisation; Virtual Memories and TLBs and provides introductions to alternate architectures including SISD, MISD, SIMD and MIMD. Verilog is used for the related labs.

Prerequisite Paper(s): COMP200, and one of COMP203, COMP206 or COMP241.
Assessment Internal assessment/examination ratio 1:0

ENEL301-17A/B/C/Y (HAM) – Special Topics in Electronics 20 points
An independent theoretical, literature, or experimental investigation of an electronics topic, supervised by a member of staff. Progress and assessment are negotiated between the student and supervisor, and typically take the form of a poster, paper manuscript and/or report.

Co-ordinator(s): Associate Professor Rainer Künnemeyer
Assessment: Internal assessment/examination ratio: 1:0
ENEL312-17A (HAM) – Electromagnetic Waves 20 points
This paper discusses electromagnetic wave phenomena using classical electromagnetic theory, which is applied to a range of engineering applications such as transmission lines, waveguides, antennas, electromagnetic interference, and microwave circuits.

Co-ordinator(s): Associate Professor Rainer Künnemeyer
Prerequisite(s): ENEL284 or PHYS201, and ENGG285 or MATH251
Restriction(s): ENEL301-09A
Equivalent: PHYS312
Assessment: Internal assessment/examination ratio: 1:2
Note(s): A minimum mark of 40% is required in the examination to receive a passing grade. Laboratory attendance is compulsory.

ENEL317-17B (HAM) – Microprocessor Applications and Control 20 points
This paper provides an introduction to the field of mechatronics. Topics covered include a study of sensors and transducers, signal conditioning electronics, circuit analysis using both the Laplace and Z transforms, and PID control theory. Laboratory exercises in which microprocessors are interfaced to physical systems in order to monitor and/or control real-world processes. This paper includes a compulsory laboratory component.

Co-ordinator(s): Dr Michael Cree
Prerequisite(s): ENGG182 or COMP103 and ENEL205 and one of ENEL211 or ENEL212
Assessment: Internal assessment/examination ratio: 1:0
Note(s): A minimum mark of 40% in the internal tests is normally required in order to receive a passing grade.

ENEL321-17B (HAM) – Application Specific Integrated Circuits 20 points
The design and construction of integrated circuits including silicon and compound semiconductor IC fabrication, design hierarchy, circuit layout, operating reliability and failure, verification and test. Circuits that can only be fabricated in a monolithic environment are studied and built.

Co-ordinator(s): Professor Jonathan Scott
Prerequisite(s): ENGG182 or COMP103 and ENEL205 and one of ENEL211 or ENEL212
Recommended book(s): Weste and Harris CMOS VLSI Design (Addison-Wesley) 2005; Grey and Meyer, Analysis and Design of Analog Integrated Circuits
Assessment: Internal assessment/examination ratio: 1:1
ENEL324-17A (HAM) – Optoelectronics 20 points
This paper discusses the principles of modern optoelectronic components and systems in particular lasers, semi-conductor devices, optoelectronic devices and optical fibres. Theoretical as well as practical aspects will be covered.

Co-ordinator(s): Associate Professor Rainer Kün nemeyer
Prerequisite(s): MATH101 and MATH102, or ENGG183 and ENGG184, and ENEL285
Assessment: Internal assessment/examination ratio: 1:2
Note(s): Laboratory attendance is compulsory. A minimum mark of 40% is required in the examination to receive a passing grade.

ENEL382-17B (HAM) – High Speed Communications 20 points
This lecture and laboratory paper introduces communications theory and its application to wireless and fibre-optic communication systems.

Co-ordinator(s): Dr Lee Streeter
Prerequisite(s): One of ENGG283 or MATH253, and one of ENGG285 or MATH251
Assessment: Internal assessment/examination ratio: 1:1
Note(s): A minimum mark of 40% is required in the examination to receive a passing grade.

ENEL385-17B (HAM) – Power Electronics 20 points
This paper covers the theory and practice of power semiconductors, power converters, power management, protection, and energy storage devices.

Co-ordinator(s): Associate Professor Nihal Kularatna
Prerequisite(s): ENEL205
Restriction(s): ENEL485 and ENEL585
Assessment: Internal assessment/examination ratio: 1:1
Note(s): A minimum mark of 40% is required in the examination to receive a passing grade.
400 level papers

ENEL417-17A (HAM) – Mechatronics 20 points
This paper covers embedded micro-programming, feedback control, interface to electro-mechanical systems involving gears, motors, belt drivers, actuators and sensors: the enabling technologies of robotics. A series of projects require students to integrate software, control, mechanical and electromotive skills to achieve practical goals.

Co-ordinator(s): Professor Jonathan Scott
Prerequisite(s): ENEL317
Restriction(s): ENEL517
Assessment: Internal assessment/examination ratio: 1:0

ENEL423-17B (HAM) – Electro-Optical Instrumentation 20 points
Theoretical and practical aspects of advanced electro-optical instrumentation will be discussed and applied in practical sessions. Topics include telemeters, interferometers for velocity or vibration detection, optical gyroscopes, optical fibre sensors, and others.

Co-ordinator(s): Associate Professor Rainer Künnemeyer
Prerequisite(s): ENEL324
Restriction(s): ENEL322 and ENEL522
Required book(s): To be advised
Assessment: Internal assessment/examination ratio: 1:1
Note(s): A minimum mark of 40% in the examination is required to receive a passing grade. Laboratories are compulsory. This paper will only be offered if there are sufficient student numbers.

ENEL485-17B (HAM) – Power Electronics 20 points
This paper covers the theory and practice of power semiconductors, power converters, power management, protection, and energy storage devices.

Co-ordinator(s): Associate Professor Nihal Kularatna
Prerequisite(s): ENEL205
Restriction(s): ENEL385 and ENEL585
Assessment: Internal assessment/examination ratio: 1:1
Note(s): A minimum mark of 40% in the examination is required to receive a passing grade.

ENGG401-17A (HAM) – Control Theory and Image Processing 20 points
For details see Engineering ENGG401.
Engineering

100 level papers

ENGG110-17B (HAM) – Engineering Mechanics 15 Points
Introductory paper to engineering mechanics, extending Newtonian mechanics to forces acting on a body. Statics deals with objects, structures, fluids in equilibrium; dynamics deals with bodies in motion.

Co-ordinator(s): Dr Ali Khajeh Samani
Prerequisite(s): 14 credits at L3 in NCEA Physics (or PHYS100) and 14 credits at L3 in NCEA Calculus (or MATH165)
Assessment: Internal assessment/examination ratio: 1:1

ENGG180-17A (HAM) – Foundations of Engineering 15 Points
This paper introduces engineering design and the design process, fundamental laws for engineering analysis, accounting principles for mass and energy, and the skills of a successful engineer. Includes a design-build-test experience. There is a compulsory laboratory component.

Co-ordinator(s): Dr Rob Torrens
Restriction(s): ENGG302
Assessment: Internal assessment/examination ratio: 1:1

ENGG182-17A/B (HAM) – Engineering Computing 15 Points
This paper introduces computer programming in language such as C# and Python. It provides the basis for the programming skills required in more advanced papers within the School of Engineering.

Co-ordinator(s): TBA
Restriction(s): COMP103
Assessment: Internal assessment/examination ratio: 1:2 or 2:1, whichever is more favourable for the student

ENGG183-17A/B (HAM) – Linear Algebra for Engineers 15 Points
A study of introductory statistics and the fundamental techniques of algebra including Gaussian elimination, vector and matrix algebra, complex numbers, eigenvalues and eigenvectors, as well as basic statistical notions and tools, with engineering applications.

Co-ordinator(s): TBA
Prerequisite(s): 16 credits of NCEA level 3 Calculus; or one of MATH165 or MATH166; or at least a B grade in CAFS004; or equivalent
Restriction(s): MATH102
Assessment: Internal assessment/examination ratio: 1:1

ENGG184-17A/B/S (HAM) – Calculus for Engineers 15 Points
A study of the fundamental techniques of calculus, including differentiation and integration for functions of one real variable, with engineering applications.

Co-ordinator(s): TBA
Prerequisite(s): 16 credits of NCEA level 3 Calculus including at least 11 credits from AS91577, AS91578 and AS91579; or any one of MATH165, MATH166, or ENGG183; or at least a B grade in CAFS004; or equivalent
Restriction(s): MATH101
Assessment: Internal assessment/examination ratio: 1:1
200 level papers

ENGG279-17B (HAM) – Preparation for the Professional Workplace 0 Points
For details see Work placements on page 131.

ENGG282-17B (HAM) – Engineering Design 10 Points
This core paper for BE(Hons) students introduces the design process as a problem-solving activity. This is reinforced by a group design project. Students also learn how to use and apply CAD design software and produce engineering drawings.
Co-ordinator(s): Dr Shen Hin Lim
Assessment: Internal assessment/examination ratio: 1:1

ENGG283-17A (HAM) – Linear Algebra for Engineers 10 points
This paper develops the fundamental ideas and techniques of linear algebra, with an emphasis on the practical engineering aspects of the subject. Topics will be selected from: basis and dimension of a vector space, geometric effect of a matrix transformation, determinant, subspaces of vector spaces, linear independence, change of basis, range and kernel, eigenvectors and eigenvalues, diagonalisation of matrices, the inner product, orthonormal bases, the Gram-Schmidt process, orthogonal diagonalisation of symmetric matrices, complex Euclidean spaces, Hermitian matrices and their diagonalisation.
Co-ordinator(s): Dr Nick Cavenagh
Prerequisite(s): MATH102 or ENGG183
Restriction(s): MATH253
Required book(s): Anton Elementary Linear Algebra 8th or 9th ed (Wiley) 2000
Assessment: Internal assessment/examination ratio: 1:1

ENGG284-17B (HAM) – Differential Equations for Engineers 10 points
This paper includes ordinary and partial differential equations with applications to engineering problems; first-order equations, systems of equations and higher-order equations, phase-plane diagrams and geometrical methods; solution to the wave equation, heat diffusion equation and Laplace's equation using separation of variables and Fourier series techniques.
Co-ordinator(s): Woei Chet Lim
Prerequisite(s): MATH101 and MATH102 or ENGG183 and ENGG184
Restriction(s): MATH255
Required book(s): Boyce and Di Prima Elementary Differential Equations and Boundary Value Problems 7th or 8th ed (Wiley) 2003
Assessment: Internal assessment/examination ratio: 1:1

ENGG285-17A (HAM) – Multivariable Calculus for Engineers 10 points
Differentiation of functions of n-variables and vector functions; applications including tangent planes, normals and optimisation; integration in n-dimensions; and applications including curve length, surface areas and volumes. Further applications will be selected from: centre of mass co-ordinates and moments of inertia; gradient, divergence and curl operators; curvilinear co-ordinate systems; and integral theorems with applications to engineering problems.
Co-ordinator(s): Yuri Litvinenko
Prerequisite(s): MATH101 and MATH102 or ENGG183 and ENGG184
Restriction(s): MATH251
Recommended book(s): Finney et al Thomas’ Calculus 10th or 11th ed (Addison-Wesley) 2003
Assessment: Internal assessment/examination ratio: 1:1
ENGG287-17A (HAM) – Engineering Applications 10 points
Computer programming as a tool for engineering, using computer languages and systems to solve engineering problems.

Co-ordinator(s): Associate Professor Alistair Steyn-Ross
Prerequisite(s): PHYS103 or ENGG110 and one of ENGG182 or COMP103
Assessment: Internal assessment/examination ratio: 1:1

300 level papers

ENGG301-17A/B/C/Y (HAM) – Special Topic in Engineering 20 points
An independent theoretical, literature or experimental investigation of an engineering topic, supervised by a member of staff.

Co-ordinator(s): Dr Rob Torrens
Assessment: Internal assessment/examination ratio: 1:0

ENGG302-17A (HAM) – Engineering for Technology 20 points
This paper covers engineering fundamentals and the design process and the relationship of engineering to technology. It includes a design-build-test experience and links to pedagogical teaching processes. This paper is only available for people enrolled in the GradDip(Eng) in Technology Teaching. There is a compulsory laboratory component.

Convener(s): Dr Rob Torrens
Prerequisite(s): At the discretion of the paper convenor
Restriction(s): ENGG180
Assessment: Internal assessment/examination ratio: 3:2

ENGG371-17C (HAM) – Engineering Work placement 1 0 Points
For details see Work placements on page 131.

ENGG372-17C (HAM) – Engineering Work placement 2 0 Points
For details see Work placements on page 131.

ENGG379-17A (HAM) – Reflection on Professional Workplace Experience 0 Points
For details see Work placements on page 131.

ENGG381-17A (HAM) – Engineering Statistics 20 points
This paper is aimed specifically at engineering students. It covers statistical models, experimentation for quality designing and control, process measurement and improvement, statistical process control and capability, and reliability.

Lecturer(s): Dr Steven Miller
Prerequisite(s): MATH101 and MATH102 or ENGG183 and ENGG184
Assessment: Internal assessment/examination ratio: 1:1
400 level papers

ENGG401-17A (HAM) – Control Theory and Image Processing 20 points
This paper deals with PID feedback control of linear systems using classical as well as state space methods. It also deals with signal processing with special attention to image processing. It is highly computer and project based.

Convenor(s): Associate Professor Howell Round
Prerequisite(s): One of ENEL317 or ENME352
Restriction(s): ENGG501
Recommended book(s): Franklin et al. Feedback Control of Dynamic Systems 7th ed (Prentice Hall)
Assessment: Internal assessment/examination ratio: 1:0

ENGG492-17A/B/C/Y (HAM) – Honours Research and Management Project 60 Points
Practical projects including design philosophy; market requirements; specifications; project planning and research; management components and material selection; basic design and analysis; computer aided design; prototype development; reliability; quality; safety; failure analysis and protection, regulations; standards and codes; documentation and patents. There is a substantial research component. This paper can only be taken for the BE(Hons).

Co-ordinator(s): Dr Graeme Glasgrow
Programme Convenor(s): Associate Professor Johan Verbeek (Chemical and Biological Engineering), Professor Jonathan Scott (Electronic Engineering), Associate Professor Michael Walmsley (Materials and Process Engineering), Associate Professor Mike Duke (Mechanical Engineering) and Professor Steve Reeves (Software Engineering)
Prerequisite(s): All 100, 200, 300 level BE(Hons) papers of the student’s chosen programme.
Assessment: Internal assessment/examination ratio: 1:0
Environmental Sciences

100 level papers

ENVS101-17B (HAM) – Environmental Science 15 Points
An interdisciplinary study of the fundamental concepts in environmental science. The paper
includes ecosystems, nutrient cycles, population principles, water, soil and energy resources,
wetlands, human food supplies, agrochemicals, heavy metals, the greenhouse effect,
photochemical smog, and waste management.
Lecture material is complemented by a practical component that includes six three-hour laboratory
sessions and two field trips.

Co-ordinator(s): Dr Megan Balks
Lecturer(s): Dr Ian Duggan, Dr Megan Balks, Dr Mohamed Rishard
 and Associate Professor Conrad Pilditch
Tutor(s): Dr Tanya O'Neill
Required reading: ENVS101 Study Guide
Assessment: Internal assessment/examination ratio: 1:1
Materials and Processing

100 level papers

ENMP102-17B (HAM) – Introduction to Materials Science and Engineering 15 points
Engineers in all disciplines encounter and use materials in their various practices. To function effectively, an engineer needs to have some understanding of the properties and behaviour of materials. This is particularly relevant in design and maintenance, when engineers need to make important decisions on the choice of materials to be used in a component. This paper is, therefore, designed to address the introductory materials science requirements for first-year engineering programmes.

Co-ordinator(s): Dr Rob Torrens
Assessment: Internal assessment/examination ratio: 1:1

200 level papers

ENMP211-17A (HAM) – Materials 1 20 points
Why are some materials as hard as nails, soft as putty, tough as old boots, or as strong as an ox? And how can they be improved? This paper introduces the basic concepts of materials technology and how to apply these concepts to everyday environments. You will be introduced to the uses and limitations of metals (ferrous and non-ferrous), ceramics/fine ceramics (superconductors, ionic conductors etc), cements and concrete, polymers and composite materials (natural, such as wood, and synthetic, such as carbon fibre-reinforced composites).

Co-ordinator(s): Professor Kim Pickering
Prerequisite(s): 15 points at level 100 chemistry or equivalent credit, or ENMP102
Assessment: Internal assessment/examination ratio: 1:1

ENMP213-17B (HAM) – Mechanics of Materials 1 20 points
Students learn the basics of stress analysis used in mechanical engineering design. This course introduces the essential aspects of designing structures subjected to axial, bending and torsional loads. An important outcome is an introduction to the fundamental principles of stress analysis.

This paper is taught through lectures, tutorials and a weekly workshop for problem-solving.

Co-ordinator(s): Dr Ali Khajeh Samani
Prerequisite(s): MATH101 or ENGG184 and PHYS103 or ENGG110
Assessment: Internal assessment/examination ratio: 1:1
ENMP214-17B (HAM) – Manufacturing Processes 10 points
This paper gives students an understanding of the fundamental principles and basic relationships underlying selected major manufacturing processes widely used in industry, including machining processes, metal casting, forming processes such as extrusion, welding and joining processes. Knowledge on metrology and non-destructive testing techniques will also be introduced. It is highly recommended that students taking this paper also take ENMP215.

Co-ordinator(s): Dr Chi Kit Au
Prerequisite(s): ENMP102
Assessment: Internal assessment/examination ratio: 1:1

ENMP215-17B (HAM) – Manufacturing Technology 10 points
This paper covers the practical aspects of manufacturing processes, and students have the opportunity to increase their practical workshop skills. The major processes covered by the paper include machining, casting, mechanical forming, welding, and printed board manufacturing. It is highly recommended that students taking this paper also take ENMP214.

Co-ordinator(s): Dr Chi Kit Au
Prerequisite(s): ENMP102
Assessment: Internal assessment/examination ratio: 1:1

ENMP221-17A (HAM) – Engineering Thermodynamics 20 points
This paper teaches fundamental concepts and laws of thermodynamics and thermodynamic properties of engineering materials, with applications to mass and energy analysis of chemical processes, power cycles, and refrigeration cycles. It includes laboratory work.

Co-ordinator(s): Associate Professor Michael Walmsley
Prerequisite(s): ENGG180 or ENMP102
Required book(s): Cengel and Boles Thermodynamics, an Engineering Approach 7th ed (McGraw Hill)
Assessment: Internal assessment/examination ratio: 1:1

ENMP222-17B (HAM) – Biotechnology: Food and Bioresources 20 points
This paper is delivered jointly by the School of Science and the School of Engineering. It introduces biotechnology, microbiology and processing of bioproducts, composition and processing of selected foods, and food processing. There is a laboratory component. Subject to sufficient enrolments.

Co-ordinator(s): Professor Janis Swan and Associate Professor Ian McDonald
Prerequisite(s): BIOL101 and a further 15 points at 100 level from Biological Sciences, Chemistry, Engineering or Materials and Processing
Assessment: Internal assessment/examination ratio: 1:1

ENMP223-17B (HAM) – Thermofluids 20 points
This paper teaches fundamental concepts and laws related to static and dynamic behaviour of fluids, and heat transfer in steady and transient systems. It includes laboratory work.

Co-ordinator(s): Associate Professor Michael Walmsley
Prerequisite(s): PHYS103 or ENMP221 or ENGG110
Assessment: Internal assessment/examination ratio: 1:1

Materials and processing papers
ENMP241-17B (HAM) – Environmental Technology 1 20 points
Environmental engineering combines the principles of science and engineering to understand and find solutions for existing problems and to design systems and technologies for future sustainable development. In this introductory paper fundamentals of environmental engineering of the solid, liquid and gas phases will be examined. The course will be taught using a combination of lectures, tutorials, readings, laboratory work and field trips.

Co-ordinator(s): Dr Graeme Glasgow and Dr Mark Lay
Prerequisite(s): Any 30 points from 100 level Science and Engineering papers, and 15 points from 100 level Mathematics or Statistics
Assessment: Internal assessment/examination ratio: 1:1

ENMP282-17A (HAM) – Science and Engineering Management A 10 points
A study of the management function and activities relating to the needs of scientists and engineers. Topics include technology and innovation, communication and financial management.

This paper will not normally be available for a major in Materials and Processing.

Co-ordinator(s): Dr Marcus Wilson
Restriction(s): ENGG280 and ENMP281
Assessment: Internal assessment/examination ratio: 1:1

ENMP283-17B (HAM) – Science and Engineering Management B 10 points
This core management paper for the BSc(Tech) is normally taken before the first industry placement. It is also a useful paper for other science students who want to be familiar with management terms and concepts. This paper provides a broad introduction to the essential aspects of management functions and activities. Topics include marketing, total quality management and ethics.

This paper will not normally be available for a major in Materials and Processing.

Co-ordinator(s): Dr Aydin Berenjian
Restriction(s): ENMP281
Assessment: Internal assessment/examination ratio: 1:1

300 level papers
ENME351-17A (HAM) – Dynamics and Mechanisms 20 points
Introduction to force, moment, equilibrium, free body diagram, work, energy, impulse, momentum and Newton’s Laws. Kinematics and kinetics of particles and rigid bodies, vibrations. Function and design of mechanical components. Students will learn to construct and solve mathematical models describing the effects of force and motion on a variety of structures, machines and other dynamic systems. This paper is normally only available to students enrolled in the BE(Hons) degree.

Co-ordinator(s): Dr Marcus Wilson
Prerequisite(s): PHYS103 or ENGG110
Equivalent: ENGG351
Assessment: Internal assessment/examination ratio: 1:1
ENME352-17B (HAM) – Machine Dynamics and Control 20 points
Topics covered include vibrations of multiple degree of freedom systems, modelling and analysis
for design improvements, vibration control, mathematical modelling, time, feedback and frequency
response, control actions and controllers. Students will gain skills to allow them to design dynamic
systems. This paper is normally only available to students enrolled in the BE(Hons) degree.
Co-ordinator(s): Professor Ilanko
Prerequisite(s): ENME351
Equivalent: ENGG352
Restriction(s): ENEL317
Recommended book(s): Tongue Principles of Vibration (Oxford)
Assessment: Internal assessment/examination ratio: 1:1

ENME380-17B (HAM) – Mechanical Engineering Design 20 points
Aspects of machine design and power transmission are covered. Engineering drawing and design
techniques are further developed and applied through project work. The benefits and pitfalls of
simulating mechanical designs is demonstrated and discussed. Electrical machines including DC, AC
motors and solenoids are explained in a mechanical engineering context. This paper is normally only
available to students enrolled in the BE(Hons) degree.
Co-ordinator(s): Associate Professor Mike Duke
Prerequisite(s): ENGG282 and ENMP213
Required book(s): Childs Mechanical Design 2nd ed (Arnold) 2004
Assessment: Internal assessment/examination ratio: 1:1

ENMP301-17A/B/S/Y (HAM) – Special Topics in Technology 20 points
An independent theoretical literature or experimental investigation of a technological topic
supervised by a member of staff.
Co-ordinator(s): Dr Rob Torrens
Assessment: Internal assessment/examination ratio: 1:0

ENMP311-17B (HAM) – Materials 2 20 points
This paper advances knowledge presented in ENMP211 on structure, property, processing
relationships fundamental to materials science engineering. The paper focuses on aspects of new
materials, and the concept of advanced hi-tech materials. This paper includes microstructure
modification, new materials and applications. With a basic understanding of the concepts, students
will now start to understand the design philosophy. By the end of the paper, students will be able to
understand the requirements for a particular application and be able to select materials on the basis
of their properties.
Co-ordinator(s): Professor Kim Pickering
Prerequisite(s): ENMP211
Assessment: Internal assessment/examination ratio: 1:1
Note(s): This paper is recommended if proceeding to masters-level study in materials-
related research.
ENMP313-17A (HAM) – Mechanics of Materials 2 20 points
This paper aims to provide students with the knowledge and skills to design components and structures at an advanced level. It examines the scientific principles and relationships underlying mechanics and performance of materials, stress and strain transformations, failure criteria, deflections and angle of twist, stress in bending and fatigue. A major design project is incorporated in the paper to give students opportunities to apply the knowledge learnt in solving practical problems. By the end of the course students will have the essential knowledge and skills needed in designing components and structures in many engineering situations.

Co-ordinator(s): Dr Shen Hin Lim
Prerequisite(s): ENMP213
Assessment: Internal assessment/examination ratio: 1:1

ENMP321-17B (HAM) – Process Engineering and Design 20 points
This paper provides advanced aspects of design and process technology for commercial production of biological, chemical and mineral products. The principles of chemical and biological engineering, including designing production systems, process simulation; process economics, equipment design and separation technology. Once physical processes have been reviewed, the emphasis moves to process design – how to put together an integrated process and how to assess and implement it.

A key component in the paper is process economics – will the process make money or not?

Co-ordinator(s): Associate Professor Johan Verbeek
Prerequisite(s): ENMP221
Assessment: Internal assessment/examination ratio: 1:1

ENMP322-17B (HAM) – Biotechnology 20 points
The paper includes: Industrial biotechnological applications of enzymes and micro-organisms, principles of bioreactor and fermenter design and operation, industrial separation and purification of biological material, and selected unit operations for bioprocessing. Topics may also include biomass and alcohol production, enzymes in food processing, and biotechnologies in food and by-products. The computing laboratories cover aspects of bioreactor operation, fermentations and bioseparations.

Co-ordinator(s): Dr Aydin Berenjian
Prerequisite(s): One of BIOL241, ENMP221 or ENMP222
Assessment: Internal assessment/examination ratio: 1:1

ENMP323-17A (HAM) – Transport Processes and Unit Operations 20 points
This paper covers analysis and application of fluid phase equilibria, heat and mass transfer and separation processes. The fundamentals of drying, evaporation, membrane separations, and distillation are discussed.

Co-ordinator(s): Dr James Carson
Prerequisite(s): ENMP223
Recommended book(s): McCabe, Smith and Harriot, Unit Operations of Chemical Engineers, 7th ed (McGraw-Hill)
Assessment: Internal assessment/examination ratio: 1:1
ENMP325-17A (HAM) – Engineering Microbiology 20 points
This paper deals almost wholly with bacteria. Its aim is to provide insight into their structure, how they are classified, how they grow and some account of their very diverse physiologies. Structure and physiology are discussed in relation to the role of bacteria in nature and how various methods (such as the use of antibiotics) may be used to control their growth. This paper is normally only available to students enrolled in the BE(Hons) degree.
Lecturer(s): Associate Professor Ian McDonald and Dr Charles Lee
Prerequisite(s): ENMP221 and either BIOL101 or BIOL102
Restriction(s): BIOL241
Required book(s): Madigan et al Brock Biology of Microorganisms 13th ed (Prentice-Hall)
Assessment: Internal assessment/examination ratio: 1:1

ENMP341-17A (HAM) – Environmental Technology 2 20 points
The paper focuses on technologies for air, water and energy that maximise the efficiency of resource utilisation and minimise waste generation and environmental impact. Energy technology and fuel science, particularly the development of renewable energy sources, minimisation of carbon emissions and air quality issues (indoor and outdoor) are important themes of the paper.
Co-ordinator(s): Dr Graeme Glasgow
Prerequisite(s): 30 points at 100 level in Science and Engineering papers
Assessment: Internal assessment/examination ratio: 1:1

ENMP381-17B (HAM) – Technological Innovation and its Management 20 points
This paper is directed towards understanding the innovation process and examines the issues and important factors that ensure the new knowledge generated by scientific research finds application. It is designed to be interactive and draws upon and develops students’ differing experiences of science and technology. Course content is organised in teaching blocks with topics including invention and creative thinking, technology evaluation, information technology, technological economics and technology project management. A feature of the paper is creating, evaluating and business planning for technological innovations, which is done in a small group environment. The paper is internally assessed. Exercises of appropriate weighting are based upon each of the teaching blocks.
This paper will not normally be available for a major in Materials and Processing.
Co-ordinator(s): Dr Aydin Berenjian
Prerequisite(s): ENMP282 or ENMP283 or any 100 level management subject or 60 points from any 200 level Science and Engineering subject(s)
Assessment: Internal assessment/examination ratio: 1:0
400 level papers

ENME440-17A (HAM) – Finite Element Analysis and Applications 20 points
This paper explains a general computational strategy to determine the response of a physical system to loads or other stimuli, in which the system is first divided into a large number of small finite elements of regular shape whose behaviour can be numerically modelled by solving the equations governed by the relevant laws of physics. Applications include finding the stresses and displacements due to loading in a structure, or the temperature distribution in a heat exchanger due to heat input. Practical application of the theory includes computer laboratory exercises where students will develop their own computer programs for simple problems and the use of commercial software to solve more complicated problems. This paper is normally only available to students enrolled in the BE(Hons) degree.

Co-ordinator(s): Professor Ilanko

Prerequisite(s): ENGG285 or MATH251, and ENGG284 or MATH255, and ENMP313

Restriction(s): ENGG440, ENSC440, ENGG540 and ENSC540

Assessment: Internal assessment/examination ratio: 1:0

ENME451-17B (HAM) – Mechanics of Vibration 10 points
Students will learn how to apply Newton’s laws of motion and energy principles to complex mechanical systems, including continuous systems and how to calculate natural frequencies and dynamic response of machines and machine components. This paper is normally only available to students enrolled in the BE(Hons) degree.

Co-ordinators(s): Professor Ilanko

Prerequisite(s): ENME351 and ENME352

Restriction(s): ENME352

Assessment: Internal assessment/examination ratio: 1:1

Note(s): This paper will be offered only if there is sufficient student interest.

ENME480-17A (HAM) – Advanced Product Development 10 points
The paper explains the technologically-driven changes affecting modern product development. It also teaches the most common rapid prototyping technologies and when to apply them. Examples of virtual engineering and simulation are demonstrated. Advanced manufacturing techniques are explained and demonstrated. This paper is normally only available to students enrolled in the BE(Hons) degree.

Co-ordinator(s): Associate Professor Mike Duke

Prerequisite(s): ENME380

Assessment: Internal assessment/examination ratio: 1:0

ENMP407-17A/B (HAM) – Materials and Processing Elective 10 points
An advanced study in materials and processing. Possible options include: advanced composites; metals; bioseparations processing; environmental technology. Sub-topics include: available processing options; effect of material characteristics on processing parameters. This paper is normally only available to students enrolled in the BE(Hons) degree.

Co-ordinator(s): Dr Rob Torrens

Assessment: Internal assessment/examination ratio: 1:0
ENMP411-17A (HAM) – Advanced Materials Engineering 10 points
An advanced study of the relationships between processing and microstructure of engineering materials. Sub-topics include solidification, ceramic processing, joining and repairs of composite materials and powder metallurgy. This paper is normally only available to students enrolled in the BE(Hons) degree.
Co-ordinator(s): Dr Leandro Bolzoni
Prerequisite(s): ENMP311
Assessment: Internal assessment/examination ratio: 1:4

ENMP413-17B (HAM) – Materials Performance in Service 10 points
Students learn how to solve load and displacement problems using energy methods. Students will be introduced to plastic limit state analysis of structures.
Co-ordinator(s): Dr Ali Khajeh Samani
Prerequisite(s): ENMP313
Required book(s): The Plastic Methods of Structural Analysis, Neal (Springer)
Assessment: Internal assessment/examination ratio: 1:1

ENMP422-17A (HAM) – Advanced Process Simulation and Control 20 points
Process dynamics, simulation and control and modern control systems, including open and closed loop, linear and non-linear systems, PID control, stability and tuning. Includes process simulation with commercial software packages. This paper is normally only available to students enrolled in the BE(Hons) degree.
Convenor(s): Associate Professor Michael Walmsley
Prerequisite(s): ENMP321 or ENME352
Restriction(s): ENMP421
Required book(s): Seborg et al Process Dynamics and Control (Wiley)
Assessment: Internal assessment/examination ratio: 2:3

ENMP427-17A (HAM) – Biochemical Engineering 20 points
This paper describes concepts of using biological materials for producing biomolecules, cell-based products and tissues, and carrying out transformations. The principles of downstream separation processes important in the bioprocess industries; modelling and costing such processes are included. This paper is normally only available to students enrolled in the BE(Hons) degree.
Co-ordinator(s): Dr Mark Lay
Prerequisite(s): ENMP321 and ENMP322
Restriction(s): ENMP426
Assessment: Internal assessment/examination ratio: 1:1

ENMP442 – Environmental Technology 3 20 points
This paper will not be offered in 2017.
Physics

100 level papers

PHYS100-17A (HAM) – Exploring Physics 15 points
This introductory paper requires only a basic knowledge of school mathematics or physics. This paper is of interest and importance to scientists, technologists, mathematicians, engineers and teachers in all disciplines who want to understand the laws and processes that govern the world around us. Students who successfully complete this paper can also take PHYS103.

Co-ordinator(s): Professor Moira Steyn-Ross and Dr Lee Streeter
Prerequisite(s): 14 credits at level 2 NCEA in one of Mathematics or Physics, or a minimum of 8 credits at level 3 in NCEA across Statistics and Modelling and/or Calculus and/or Physics
Required book(s): Kirkpatrick and Francis Physics: A Conceptual World View (7th ed) with Problem-solving Supplement (Brooks/Cole) 2010
Assessment: Internal assessment/examination ratio: 1:1

PHYS103-17B (HAM) & 17B (SEC) – Physics for Scientists and Engineers 1 15 points
An introduction to physics suitable for scientists and engineers. Applications of physics to the real world will be emphasised. Topics include mechanics, dynamics, oscillations, waves, sound, light, and electric and magnetic forces. This paper includes a compulsory laboratory component, and a compulsory online assignment component.

Co-ordinator(s): Associate Professor Alistair Steyn-Ross
Prerequisite(s): (14 credits NCEA level 3 Physics OR PHYS100) AND (14 credits NCEA level 3 Calculus OR one of MATH165, MATH101 or MATH102)
Required book(s): Wolfson Essential University Physics Vols 1 and 2 (Pearson Addison-Wesley) 2003 with a ‘Mastering Physics’ online student access code
Assessment: Internal assessment/examination ratio: 1:1
Note(s): A minimum mark of 40% is required in the examination to receive a passing grade.
300 level papers

ENEL312-17A (HAM) – Electromagnetic Waves 20 points
For details see ENEL312 Electronics.

ENEL324-17A (HAM) – Optoelectronics 20 points
For details see ENEL324 Electronics.

PHYS302-17B (HAM) – Quantum Physics 20 points
This paper covers classical Lagrangian theory, Hamilton’s equations, basic postulates of quantum mechanics, representations, Dirac notion, angular momentum, perturbation theory, conceptual problems and solid state theory.

Co-ordinator(s): Professor Moira Steyn-Ross
Prerequisite(s): PHYS205 and ENEL285 (or only PHYS202), and MATH251 and MATH253
Assessment: Internal assessment/examination ratio: 1:2

PHYS315-17A (HAM) – Computational Biophysics 20 points
This is a lecture and computer laboratory paper on computational methods used in neuroscience and biophysics. Topics covered include linear and non-linear differential equations, Euler and Runge-Kutta integration methods, limit cycles, action potential generation, hysteresis and memory in simple neural systems, stability, noise simulation, and root finding. The programming language used is MATLAB.

Co-ordinator(s): Associate Professor Alistair Steyn-Ross
Prerequisite(s): PHYS103 and any two of MATH251, MATH253, MATH255, ENGG283, ENGG284, ENGG285, and ENGG287
Restriction(s): PHYS516
Assessment: Internal assessment/examination ratio: 1:0

PHYS318-17A/B/C/Y (HAM) – Special Topics in Physics 20 points
A library research paper and/or experimental project in selected topics in physics, supervised on a tutorial basis and examined by written reports and/or experimental exercises.

Co-ordinator(s): Dr Marcus Wilson
Corequisite(s): As appropriate to topic
Assessment: Internal assessment/examination ratio: 1:0
Note(s): Available on invitation only
Psychology

Note(s): Papers marked * are considered Science papers for the BSc degree. Papers not marked with an * will contribute towards the points allowed outside Science.

100 level papers

PSYC101 – Foundations of Psychology 15 points
This paper will not be offered in 2017.

PSYC102-17B (HAM) (TGA) – Social and Developmental Psychology* 15 points
An overview of psychological research and development of the person as a social being and on the interaction between the individual person and the groups, communities and global society to which we all belong.

Required book(s): Text book to be advised
Assessment: Internal assessment/examination ratio: 6:4

PSYC103-17A (HAM) (TGA) – General and Experimental Psychology* 15 points
The emphasis in this paper is on the individual human being and his or her functioning. This involves examining the processes of development; learning, perception and cognition; and an introduction to the underlying biological basis of behaviour. There is a basic statistics component. Later sections of the paper deal with more applied aspects such as psychological testing and clinical psychology.

Required book(s): To be advised; Statistics and Laboratory Manual: available from Campus Copy
Assessment: Internal assessment/examination ratio: 3:1

200 level papers

PSYC206-17A (HAM) – Animal Behaviour: Principles and Applications* 20 points
This paper will not be offered in 2017.

PSYC208-17B (HAM) (TGA) – Psychological Research: Analysis, Design and Measurement* 20 points
Psychology uses a range of research methods including experiments, natural observation, surveys, interviews and interpretive methods. Anyone who wishes to understand research in Psychology must be aware of typical research designs and data analysis techniques common to such designs. The paper covers both data analysis and research methods.

Prerequisite(s): PSYC103 or equivalent
Assessment: Internal assessment/examination ratio: 3:1
PSYC225-17A (HAM) (TGA) – Behavioural Psychology and Learning* 10 points
This paper extends further the study of learning and behaviour given in the 100 level paper PSYC103 and will prepare you for the 300 level paper PSYC314. This paper covers some of the philosophy and subject matter of behavioural psychology and examines some applications. Laboratory work involving animals is required.
Prerequisite(s): PSYC103 or equivalent
Assessment: Internal assessment/examination ratio: 1:2 or 2:1

PSYC226-17A (HAM) (TGA) – The Psychology of Perception* 10 points
You will be introduced to the problems and methods involved in the study of perceptual and cognitive processes. The aim is to make you “more observant of your environment, more aware of your own perceptions, and more appreciative of the miraculous process that transforms energy falling on receptors into the richness of experience” (Goldstein, Sensation and Perception).
Prerequisite(s): PSYC103 or equivalent
Assessment: Internal assessment/examination ratio: 1:0

PSYC227-17A (HAM) (TGA) – Foundations of Behavioural Neuroscience* 10 points
This paper explores how physiological processes of the nervous system can interact with behaviour, and as important, how behaviour, cognition, and environment may exert their influence on bodily systems.
Assessment: Internal assessment/examination ratio: 1:1

PSYC228-17A (HAM) (TGA) – Culture, Ethnicity and Psychology 10 points
This paper explores the role that culture, ethnicity and context play in understanding how people make meaning of their lives and the social worlds they live in. Drawing on New Zealand based research that teaching staff are engaged in, the paper will examine important conceptual frameworks and theory within social psychology and social sciences. Generally, Māori perspectives and exemplars will be a significant emphasis within the paper.
Prerequisite(s): PSYC103 or equivalent
Assessment: Internal assessment/examination ratio: 2:1

PSYC229 – Contemporary Issues and Social Psychology 10 points
This paper will not be offered in 2017.

PSYC230-17B (HAM) (TGA) – Cognitive Psychology* 10 points
This paper will introduce you to issues, theories, and research in the study of human cognition, and give you an understanding of the mental processes underlying memory, thinking and language use.
Prerequisite(s): PSYC103 or equivalent
Assessment: Internal assessment/examination ratio: 1:0
300 level papers

HDCO340-17A (HAM) – Perspectives on Counselling 20 points
An examination of the philosophical, psychological and sociological principles that underpin the aims and methods of the helping professions in general, and counselling in particular.
Prerequisite(s): 40 points at 200 level in Education Studies, Human Development, Professional Education or Psychology
Assessment: Internal assessment/examination ratio: 1:0

PSYC301-17B (HAM) (TGA) – Community, Culture and Diversity: Applied Social Psychology 20 points
Applied social and community psychologists cover a diverse set of research areas, theoretical stances and approaches to researching and addressing social issues. Additionally, there are connections between the topic areas studied by applied social and community psychologists and other social scientists. Thus, in applied settings, social psychologists often learn from and work with people from other disciplines. In this paper we explore different approaches to applied social and community psychologies and examine a selection of particular issues that are informed by major theoretical orientations. These include diversity, Tiriti o Waitangi, health, criminal justice, media, social power, poverty, and interventions.
Prerequisite(s): PSYC228
Restriction(s): PSYC312, PSYC313, PSYC318, PSYC327, PSYC328
Assessment: Internal assessment/examination ratio: 7:3

PSYC303 – Clinical Animal Behaviour * 20 points
This paper will not be offered in 2017.

PSYC304-17B (HAM) – Animal Behaviour: Principles and Applications* 20 points
This paper will not be offered in 2017.

PSYC307-17A (HAM) (TGA) – Research Methods* 20 points
This paper examines research design, research methods and statistical methods additional to those covered in PSYC208. Topics include qualitative methods, single-subject designs and some multivariate analysis methods. Practicals involve training in computer-based data analysis. This paper is required for students who wish to proceed to graduate study in psychology.
Prerequisite(s): PSYC208 or equivalent
Assessment: Internal assessment/examination ratio: 1:0
PSYC310-17B (HAM) (TGA) – Psychology and Gender 10 points
This paper examines the contribution of psychological research and theory to understanding issues of gender, sexual orientation, gender roles and gender relationships.

Restriction(s): PSYC309
Assessment: Internal assessment/examination ratio: 2:1

PSYC314-17B (HAM) – Behaviour Analysis* 20 points
This paper examines experimental, applied and conceptual/philosophical issues in learning and behaviour analysis. The content follows from PSYC225 and extends coverage of applied behaviour analysis, introduces behaviour therapies and provides the background required for studying learning and its applications to human and animal behaviour at graduate level. Emphasis is placed on linking the experimental and applied literatures to foster a scientist-practitioner approach to problem-solving. There are required readings, two 2-hour lectures per week, and practicals involving brief experiments with humans as well as experience in shaping and altering the behaviour of an animal under laboratory conditions.

Prerequisite(s): PSYC225 or equivalent
Assessment: Internal assessment/examination ratio: 2:1 or 1:2

PSYC317-17B (HAM) – Organisational Psychology 20 points
This paper will introduce you to the psychology of work and organisational behaviour. Topics include job-relevant issues such as job design and work attitudes, career choice and personnel selection, training and performance appraisal, quality of work life and job stress. The paper also considers organisational processes such as leadership, communication, conflict management and organisational development. Emphasis is given to understanding and applying psychological theory and research.

Prerequisite(s): One of PSYC102, HRMG241, HRMG341 or HRMG342 or equivalents
Assessment: Internal assessment/examination ratio: 3:1

PSYC319-17B (HAM) (TGA) – Psychological Perspectives on Child Development 10 points
This paper focuses on the psychological study of children’s cognitive, emotional, and social development, with attention to the applications and implications of these findings in the New Zealand context.

Prerequisite(s): PSYC102 or PSYC103 or HDCO100 or equivalents
Assessment: Internal assessment/examination ratio: 2:1

PSYC337-17A (HAM) – Psychological Measurement* 10 points
This paper covers basic issues in psychological measurement and observation applicable across a range of psychological specialities. In addition to measurement theory topics covered include the history of measurement, intelligence and its measurement, personality theories and the measurement of personality, behavioural and clinical assessment, measurement with disability, in all topic there is an emphasis on both measures and strategies appropriate for the New Zealand context and on cultural considerations.

Prerequisite(s): PSYC208 or equivalent
Assessment: Internal assessment/examination ratio: 1:2 or 2:1

PSYC338-17B (HAM) (TGA) – Abnormal Psychology* 10 points
This paper deals with the classification and treatment of the major classes of psychopathology.

Prerequisite(s): PSYC102 or PSYC103 or equivalent
Assessment: Internal assessment/examination ratio: 1:1
PSYC340-17A (HAM) – Applied Cognitive Psychology* 10 points
This paper covers theories and research into human attention, memory, cognitive workload, situation awareness, decision-making, and their application to transportation, product design, information technologies, and forensic psychology.

Prerequisite(s): PSYC230 or equivalents
Restriction(s): PSYC305
Assessment: Internal assessment/examination ratio: 1:0

PSYC341-17A (HAM) – Visual Neuroscience and its Applications* 10 points
This paper examines some of the neural mechanisms underlying our sensations and perceptions (especially vision). At the completion of the course students will have acquired an understanding of the relationship between basic research findings and a broad range of applications.

Prerequisite(s): PSYC226 or equivalent
Restriction(s): PSYC305
Assessment: Internal assessment/examination ratio: 1:0

PSYC344-17A (HAM) (TGA) – Positive Psychology 10 points
This paper offers a continuation of the material in physiological psychology covered in PSYC227, with more coverage on physiological aspects of cognitive and physical performance and development.

Prerequisite(s): PSYC227 or equivalent
Restriction(s): PSYC305
Assessment: Internal assessment/examination ratio: 1:0

PSYC388-17A/B/S (HAM) (TGA) & A/B (NET) – Directed Study 10 points
Please refer to explanatory narrative under PSYC390.

Assessment: Internal assessment/examination ratio: 1:0

PSYC390-17A/B/S/Y (HAM) (TGA) – Directed Study 20 points
Students may nominate a field of study and proceed to cover it by their own reading and research under the personal direction of a staff member. Entry to a directed study requires approval from Psychology prior to enrolment. A directed study cannot be taken as part of psychology major or used to raise grade average. You should obtain the lecturer’s approval and signature on a directed study enrolment sheet (available from the School of Psychology office). You are advised to refer to the psychology staff photo board or the school’s website (psychology.waikato.ac.nz) to find out more about the research interests of individual staff members.

Assessment: Internal assessment/examination ratio: 1:0

Note(s):
A 300 level Directed Study may only be taken by students who have enrolled in or passed taught 300 level psychology papers to the value of 60 points. A directed study cannot be included in the 60 points which make up a major in Psychology. Furthermore, 300 level Directed Studies may not be used to raise your grade average for entry into the graduate programme.
Science

SCIE300-17T (HAM) – Science Communication 20 Points
Students will investigate contemporary scientific topics; learning to source relevant information, assess its validity, draw conclusions and communicate their findings to a non-scientific audience.

Co-ordinator(s): Dr Pawel Olszewski
Prerequisite(s): 30 points at 100 level in science papers.
Assessment: Internal assessment/examination ratio: 1:0

SCIE301-17A/B/C (HAM) (TGA) – Undergraduate Research Project 20 Points
Students carry out an independent research project on an approved topic under staff supervision. For a full list of available projects, please contact the paper co-ordinator. Project start and end dates should align with A, B, T, or S semester dates.

Co-ordinator(s): Associate Professor Karin Bryan
Restriction(s): BIOL307, CHEM304, ERTH311, ERTH312
Assessment: Internal assessment/examination ratio: 1 : 0
Note(s): Entry into the paper is at the discretion of the paper co-ordinator.

SCIE302-17A/B/C (HAM) – Undergraduate Research Project 10 Points
Students carry out an independent research project on an approved topic under staff supervision. For a full list of available projects, please contact the paper co-ordinator. Project start and end dates should align with A, B, T, or S semester dates.

Co-ordinator(s): Associate Professor Karin Bryan
Restriction(s): BIOL307, CHEM304, ERTH311, ERTH312
Assessment: Internal assessment/examination ratio: 1 : 0
Note(s): Entry into the paper is at the discretion of the paper co-ordinator.
Work placements

Bachelor of Science (Technology) Work placement papers

Note(s): For contact details of Work placement co-ordinators please refer to page 76.

200 level papers

SCIE279-17B (HAM) – Preparation for the Professional Workplace 10 Points
This paper consists of preparation of students entering the science workplace as part of the BSc(Tech) Work placement programme. The paper includes lectures, workshops, and one-on-one meetings with placement co-ordinators. The paper covers CV development, placement interview preparation and technique, career mentoring/direction, placement selection process, company background research, self-assessment tools, professional behaviour, technical writing, occupational health and safety, and placement interview attendance.

Convenor(s): Dr Karsten Zegwaard
Corequisite(s): ENMP282 and SCIE371
Assessment: Internal assessment/examination ratio: 1:0

300 level papers

SCIE371-17C (HAM) – Science Work Placement 1 20 points
This paper is the first Work placement for the BSc(Tech) degree and typically undertaken during the summer at the end of the second year. This paper involves 400 hours of work experience at an approved subject-related organisation. Placements are facilitated by the Cooperative Education Unit and students are paid seasonal rates during the Work placement. Assessment is based on several assessment activities during the placement, co-ordinator site visits, and employer evaluation of the work performance. Students are required to have completed SCIE279 in order to commence this paper.

Convenor(s): Dr Karsten Zegwaard
Corequisite(s): SCIE279
Assessment: Internal assessment/examination ratio: 1:0

SCIE372-17C (HAM) – Science Work Placement 2 20 points
This paper is the second Work placement for the BSc(Tech) degree and usually the first part of ‘long placement’ (400 hours). This paper commences in the summer at the end of the third year and students should have completed SCIE379 before beginning this paper. Usually students enrol in the subsequent SCIE373 paper at the beginning of the fourth year. Students may undertake an applied project at an approved subject-related organisation. Placements are facilitated for you by the Cooperative Education Unit and students are paid seasonal rates during the Work placement. Assessment is based on several assessment activities during the placement, co-ordinator site visits, and employer evaluation of the work performance. There is an option of ‘fast-tracking’ into a masters degree by enrolling in 372, completing 10 weeks of work experience instead of six-nine months, and then commencing a masters at the beginning of the fourth year; however, this must be discussed with the course co-ordinator early in the third year.

Convenor(s): Dr Karsten Zegwaard
Corequisite(s): SCIE379
Assessment: Internal assessment/examination ratio: 1:0
SCIE373-17C (HAM) – Science Work Placement 3 20 points
This paper is the last part of the long placement, commencing at the beginning of the fourth year and immediately after the second summer placement (SCIE372). Usually this placement is at the same supporting organisation. Assessment is based on co-ordinator site visits, evaluation of the work performance, and a comprehensive written technical report giving an overview of the work and analysis of the outcomes.

Convenor(s): Dr Karsten Zegwaard
Prerequisite(s): SCIE371, SCIE379
Assessment: Internal assessment/examination ratio: 1:0

SCIE379-17A (HAM) – Reflection on Professional Workplace Experience 10 points
This paper consists of post-placement reflection upon completion of the first science Work placement and the required preparation for the second Work placement. This paper includes lectures, workshops, and one-to-one meetings with placement co-ordinators. There is a focus on reflective learning on the placement experience, self-assessment outcomes initiated in the SCIE279 paper, portfolio completion, skill and skill-gap analysis, career mentoring and direction, CV updates, and the next placement selection process. Students are required to have completed a Work placements paper before commencing this paper.

Convenor(s): Dr Karsten Zegwaard
Prerequisite(s): SCIE279
Assessment: Internal assessment/examination ratio: 1:0
Bachelor of Engineering (Honours) Work placement papers

Note(s): For contact details of Work placement Co-ordinators please refer to page 76.

200 level papers

ENGG279-17B (HAM) – Preparation for the Professional Workplace 0 Points
This paper consists of preparation of students entering the engineering workplace as part of the BE(Hons) Work placement programme. The paper includes lectures, workshops, and one-on-one meetings with placement co-ordinators. The paper covers CV development, placement interview preparation and technique, career mentoring/direction, placement selection process, company background research, self-assessment tools, professional behaviour, technical writing, occupational health and safety, and placement interview attendance.

Convenor(s): Dr Karsten Zegwaard
Corequisite(s): ENMP282 and ENGG371
Assessment: Internal assessment/examination ratio: 1:0

300 level papers

ENGG371-17C (HAM) – Engineering Work Placement 1 0 Points
The first Work placement for the Bachelor of Engineering (Honours) degree is typically undertaken during summer at the end of the second year, and involves 400 hours of work experience at an approved engineering organisation relevant to your studies. Placements are facilitated by the Cooperative Education Unit and students are paid seasonal rates during the Work placement. Assessment is based on several assessment activities during the placement, co-ordinator site visits, and evaluation of the work performance. Students are required to have completed ENGG279 before doing this paper.

Convenor(s): Dr Karsten Zegwaard
Corequisite(s): ENGG279
Assessment: Internal assessment/examination ratio: 1:0

ENGG372-17C (HAM) – Engineering Work Placement 2 0 Points
The second Work placement for the Bachelor of Engineering (Honours) degree is typically undertaken during summer at the end of the third year, and involves 400 hours of work experience at an approved engineering organisation relevant to your studies. Placements are facilitated by the Cooperative Education Unit and students are paid seasonal rates during the Work placement. Assessment is based on several assessment activities during the placement, co-ordinator site visits, and evaluation of the work performance. Students are required to have completed ENGG379 before doing this paper.

Convenor(s): Dr Karsten Zegwaard
Corequisite(s): ENGG379
Assessment: Internal assessment/examination ratio: 1:0

ENGG379-17A (HAM) – Reflection on Professional Workplace Experience 0 Points
This paper consists of post-placement reflection upon completion of the first engineering Work placement and the required preparation for the second Work placement. This paper will include lectures, workshops, and one-on-one meetings with placement co-ordinators. There will be focus on reflective learning on the placement experience, self-assessment outcomes initiated in the ENGG279 paper, portfolio completion, skill and skill-gap analysis, career mentoring and direction, CV updates, and the next placement selection process. Students are required to have completed a Work placement paper before commencing this paper.

Convenor(s): Dr Karsten Zegwaard
Prerequisite(s): ENGG279
Assessment: Internal assessment/examination ratio: 1:0
General information

Handy tips 133
Changing papers 133
Impaired performance 134
Support networks 134
Scholarships 136
After hours access 136
General rules 136
Computer labs 136
Discipline policy 136
Safety policy 137
Common university terms 138
Teaching and assessment periods 2017 140
Index 141
Handy tips

Here are some suggestions to help you get the most out of University life:

• Sign up for tutorials early, as places fill fast.
• If you wish to see a particular lecturer, check on times that he or she is available to students.
• Paper outlines and book lists can be obtained in lectures or from the School office that runs the particular paper.

How do I check what I am enrolled in?

You are responsible for your programme of study and choices at enrolment. You should keep copies of any information that the University sends you confirming your enrolment status and the papers you are enrolled in. You can access your current enrolment information through iWaikato at i.waikato.ac.nz

You can also visit the Faculty Office in FG.G.04.

Check your timetable

Science and Engineering papers normally involve attending lectures, tutorials and laboratory work. Timetable clashes can occur between papers from different subject areas, or between papers at different levels.

You are required to attend all lectures and you will not usually be permitted to take papers that have more than one lecture clash per semester. There are often several streams for laboratories, so laboratory clashes can usually be resolved. If you have a laboratory clash, you should initially contact the convenor/lecturer/Co-ordinator of the papers concerned.

You can check your timetable at timetable.waikato.ac.nz

If you want to change your papers before you pay your fees, then you can call the Faculty Registrar on 0800 438 254. The change can normally be made immediately and a new invoice sent within 24 hours.

If you need to make changes after you have paid your fees (ie after you become officially enrolled), you can apply to do a “change of enrolment” on iWaikato at i.waikato.ac.nz

Changing papers

Withdrawals must be made by the required date to obtain a fees refund.

You can add or withdraw from an industry paper or any C Semester paper with a full fees refund at any time before those papers begin.

Withdrawals on medical or compassionate grounds may be made after these periods, and fees may be refunded on a pro-rata basis. Some conditions apply, and you should consult with the Faculty Registrar by calling 0800 438 254 or by dropping into the Faculty Office.
Impaired performance

Internal assessment
If you miss an internal assessment (e.g., a test or laboratory), or need an extension because you are ill, have an accident or someone close to you becomes seriously ill or dies, you can be given special compassionate consideration. You must let the lecturer or paper Co-ordinator know as soon as possible, complete a Special Consideration Form and provide a medical certificate or other relevant documentation. The administrator of the subject will be able to provide you with the required forms.

Final examinations
If you miss the final examination for any of the above reasons or if you have a medical problem that will affect your performance, you can apply for special consideration. You must apply within three days of the examination. The staff in the Student Centre can advise you on the relevant procedures.

Support networks

Science help
These are small weekly group tutorials that are additional to the mainstream tutorials offered in all core 100 level Science papers. These are advertised in the first week of each semester.

Te Pūtahi o te Manawa

Whānau support in Science & Engineering
Māori students who enrol in the Faculty are assigned a kaitiaki, or mentor, who keeps in regular contact with them throughout the year. Kaitiaki are involved in the academic and social life of the Faculty and assist in the development of a sense of whānau for students. Students who identify themselves as New Zealand Māori when they enrol are contacted and offered the opportunity of kaitiaki support early in the academic year.

For more information, contact the Science Support Unit at keastwoo@waikato.ac.nz
Alternatively, make a visit to the Faculty Office.

International students
Under the Ministry of Education’s Code of Practice for the Pastoral Care of International Students there are statutory requirements in regards to the information we must include in our publications. These are:

Code
The University of Waikato has agreed to observe and be bound by the Code of Practice for the Pastoral Care of International Students. Copies of the Code are available from the New Zealand Ministry of Education website at minedu.govt.nzinternational
Immigration

Full details of immigration requirements, advice on rights to employment in New Zealand while studying, and reporting requirements are available from Immigration New Zealand, and can be viewed on their website at immigration.govt.nz

Eligibility for health services

Most international students are not entitled to publicly funded health services while in New Zealand. If you receive medical treatment during your visit, you may be liable for the full costs of that treatment. Full details on entitlements to publicly funded health services are available through the Ministry of Health, and can be viewed on their website at moh.govt.nz

Accident insurance

The Accident Compensation Corporation provides accident insurance for all New Zealand citizens, residents and temporary visitors to New Zealand, but you may still be liable for all other medical and related costs. Further information can be viewed on the ACC website at acc.co.nz

Medical and travel insurance

International students (including group students) must have appropriate and current medical and travel insurance while in New Zealand. Contact the International Student’s Office: 07 838 4610.

Disability support

The University’s Disability Support Service works with students and the University to remove barriers to learning for students with a disability. Email disability@waikato.ac.nz to discuss any support you may need or to arrange a meeting.

If you have a disability and apply to the Faculty of Science & Engineering, you may also contact the Faculty Office to arrange appropriate support, phone: 0800 438 254 or email science@waikato.ac.nz

Disabled access

Disabled access to the blocks housing the Faculty of Science & Engineering is by way of the lifts in D, F and FG Blocks. The ground floors of these blocks can be entered by ramps from the respective car park area.
Scholarships

For further information contact the Scholarships Office:

Phone: 07 838 4439
Email: scholarships@waikato.ac.nz
Website: waikato.ac.nz/scholarships

After-hours access

After-hours access to the Faculty complex for undergraduate students is normally not available. Undergraduate students may be allowed access after hours only with the written permission of a member of University staff, granted for a specific occasion.

General rules

- Smoking is not permitted in any part of the University campus.
- Dogs (except guide dogs) and bicycles are not allowed in University buildings.
- Only those who have enrolled in the paper, except with the written permission of the lecturer, may attend lectures.
- Photocopying is available for undergraduate students in the Student Centre. Lecturers will tell you if you can use the School photocopier for a piece of assessment.
- Footwear must be worn at all times in the Science & Engineering buildings.

Computer labs

Computer Labs in rooms F1.14, R1.22 and LSL.1.16 may be used by undergraduate students when not booked for a taught class. Graduate students have priority of access. The Computer System Regulations as set out in the 2017 University of Waikato Calendar must be read and adhered to.

Discipline policy

The University Discipline Regulations are set out in the 2017 University of Waikato Calendar and apply to misconduct, including cheating, plagiarism, misuse of computer facilities, or other breach of the University regulations. Plagiarism is unacknowledged copying or paraphrasing of someone else’s work, whether published or not. It may be heavily penalised and can even result in refusal of credit for the paper.
Safety policy

1. Footwear must be worn inside all Faculty of Science & Engineering buildings. Some laboratories and workshops restrict entry to those wearing reinforced shoes. Read the notices on the door of any room you are about to enter to see the restrictions that apply.

2. When the fire alarm sounds, you must obey the instructions of the laboratory supervisor and floor warden, leave by the nearest exit, and go down the nearest staircase to the assigned assembly point outside. Lifts must not be used in a fire. If you have a medical condition or a disability, please let your laboratory supervisor know, so they may provide you with assistance during an emergency.

3. You must wear safety glasses and other protective equipment as directed by the laboratory supervisor. Prescription glasses are NOT safety glasses. There are specific requirements for some specialised laboratories. Laboratory coats and 'covered in' shoes must be worn in laboratories and workshops where hazardous substances are used.

4. You must not eat or drink in any laboratory.

5. You may not enter any laboratory outside the times scheduled for laboratory classes except with the permission of the supervisor or technician in charge.

6. You are not permitted to take any chemicals, equipment or any other material from any laboratory for private use.

7. Laboratory equipment, chemicals, or materials may be taken out of laboratories only with the written permission of the supervisor or technician in charge.

8. Visitors may be allowed in laboratories only with the permission of the supervisor or technician in charge. ALL visitors must sign in at the Faculty Office, or a School office, or the entrance to the Large Scale Laboratory.

9. For their own safety, children under 16 are not permitted in laboratories or workshops, unless on a visit organised in conjunction with the Laboratory Safety Supervisor.

10. Before going on a field trip, you must read and adhere to the field trip safety regulations supplied to you by the lecturer in charge. Please note that it is not permitted to take alcohol, drugs, or firearms on any field trip.

11. Accidents, incident, and near misses that occur in laboratories, workshops, or on field trips, must be reported as soon as possible (within 48 hours for non-serious, or immediately for serious accidents) to the appropriate supervisor and the prescribed form must be filled in. Accidents in the University grounds should be reported to Student Services.
Common university terms

100, 200, 300, 400 levels
These refer to the different levels at which papers are taught and are usually associated with years of study. First year (100 level) papers are more general while fourth year (400 level) papers are more advanced.

Bachelors degree
This is a first degree. It is sometimes also called an undergraduate degree. It takes a minimum of three or four years of full-time study to complete.

Calendar
The University’s official record of rules and regulations, staff, papers, dates, etc. It is available online at calendar.waikato.ac.nz

Corequisites
Corequisites are papers that are complementary to each other. While the knowledge gained from one paper is not required to take the other, students are required to complete both papers.

Conjoint degree
This is a special programme in which you study for two bachelors degrees at the same time, eg BSc/LLB (Science and Law). Some universities call this a double degree.

Degree
A degree is a structured course of study in a particular area such as science or management. Each degree has a different structure with a set number of papers (or courses) at different levels. To complete a degree, a student must take the papers required for that degree.

Graduate
A person who has been awarded a university degree.

Graduate qualifications
Students who have successfully completed an undergraduate qualification may be eligible to take a graduate qualification. Graduate qualifications include the Master of Engineering, Master of Science, Master of Science (Environmental Sciences), Master of Science (Research), Master of Science (Technology), postgraduate diploma and graduate diploma.

Lectures, labs and tutorials
Lectures start in the first week of term and are detailed in the University’s Catalogue of Paper Offerings and Timetable. Laboratory sessions normally start in the first or second week of teaching. Lab sessions for first-year students are normally assigned by the Faculty Office prior to the start of the first week of A Semester. You can select your tutorial times during the first week of teaching from a list of options included in the timetable and available at the first lecture.

Major
This is the main subject in your degree. To major in a subject, you study it to a higher level, ie 300 or 400 level. A double major is when you study two subjects in depth.
Paper
A paper is a series of lectures, tutorials and assessment tasks that relate to a specific topic.

Paper codes
An explanation of paper codes can be found on page 82.

Points
Degree requirements are expressed in terms of points (e.g., a three-year degree generally requires 360 points). Points bear a direct relationship to workload: one point equates to approximately 10 hours' total work; so a student might expect to spend about 150 hours on a 15-point paper during a semester.

Prerequisites
Some papers build upon the knowledge gained in earlier papers. Because of this, it is necessary to take these earlier papers first. Papers that must be taken before you can progress to other papers are known as prerequisites for the later papers.

Programme
A set of compulsory papers most commonly used for the Bachelor of Engineering (Honours).

Restriction
A restriction against a paper means you cannot do that paper if you have done a paper with similar content, e.g., ENMP281 is restricted against ENMP283.

Room numbers
A numbering system applies to every building on campus. Note that the L and S Blocks are Lecture Blocks only. For example: FG.G.04 – Dean's Office
• FG = ‘FG’ block
• G = Floor level ‘ground’
• 04 = Room number ‘04’

Science papers
Science papers are defined as papers offered by the Faculty of Computing & Mathematical Sciences and the Faculty of Science & Engineering with the exception of MATH168 Preparatory Mathematics. Some Philosophy and Psychology papers are also defined as Science papers. The Philosophy papers are PHIL102 Introduction to Logic and PHIL208 Understanding Science: How and Why it Works. Psychology papers considered to be Science papers are marked * throughout this handbook.

Specialisation
A specialisation is a study theme within a major that enables you to focus on a particular area of interest, e.g., you can do a Bachelor of Science majoring in Environmental Sciences and with a specialisation in Marine Sciences.

Undergraduate
A person who is studying at university for a first degree is known as an undergraduate.
Teaching and assessment periods 2017

<table>
<thead>
<tr>
<th>NZ Secondary School Dates</th>
<th>Week</th>
<th>Starting</th>
<th>University Teaching Periods</th>
<th>Holidays and Other Important Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-Jan-17</td>
<td>Summer School (S)</td>
<td>2-3 January</td>
<td>New Year’s Day (Observed)</td>
</tr>
<tr>
<td>2</td>
<td>9-Jan-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16-Jan-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>23-Jan-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term 1 starts</td>
<td>5</td>
<td>30-Jan-17</td>
<td></td>
<td>Auckland Anniversary Day (Observed)</td>
</tr>
<tr>
<td>6</td>
<td>6-Feb-17</td>
<td></td>
<td>6 February</td>
<td>Waitangi Day (Observed)</td>
</tr>
<tr>
<td>7</td>
<td>13-Feb-17</td>
<td>Examinations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20-Feb-17</td>
<td>Enrolment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>27-Feb-17</td>
<td>A Semester starts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6-Mar-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>13-Mar-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20-Mar-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>27-Mar-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3-Apr-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term 1 ends (13/14)</td>
<td>15</td>
<td>10-Apr-17</td>
<td>Teaching Recess</td>
<td>14 April</td>
</tr>
<tr>
<td>16</td>
<td>17-Apr-17</td>
<td>Teaching Recess</td>
<td>17-18 April</td>
<td>Easter Monday, University Holiday</td>
</tr>
<tr>
<td>17</td>
<td>24-Apr-17</td>
<td>A Semester cont.</td>
<td>25 April</td>
<td>ANZAC Day</td>
</tr>
<tr>
<td>Term 2 starts</td>
<td>18</td>
<td>1-May-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8-May-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>15-May-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22-May-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>29-May-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5-Jun-17</td>
<td>Study Week</td>
<td>5 June</td>
<td>Queen’s Birthday</td>
</tr>
<tr>
<td>24</td>
<td>12-Jun-17</td>
<td>Examinations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>19-Jun-17</td>
<td>Examinations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26-Jun-17</td>
<td>Teaching Recess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term 2 ends (07/07)</td>
<td>27</td>
<td>3-Jul-17</td>
<td>Enrolment</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>10-Jul-17</td>
<td>B Semester starts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>17-Jul-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term 3 starts</td>
<td>30</td>
<td>24-Jul-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>31-Jul-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>7-Aug-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>14-Aug-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>21-Aug-17</td>
<td>Teaching Recess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>28-Aug-17</td>
<td>B Semester cont.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>4-Sep-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>11-Sep-17</td>
<td></td>
<td>14 September</td>
<td>Kingitanga Day</td>
</tr>
<tr>
<td>38</td>
<td>18-Sep-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term 3 ends (29/09)</td>
<td>39</td>
<td>25-Sep-17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2-Oct-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>9-Oct-17</td>
<td>Study Week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term 4 starts (16/10)</td>
<td>42</td>
<td>16-Oct-17</td>
<td>Examinations</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>23-Oct-17</td>
<td>Examinations</td>
<td>23 October</td>
<td>Labour Day</td>
</tr>
<tr>
<td>44</td>
<td>30-Oct-17</td>
<td>Teaching Recess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>6-Nov-17</td>
<td>Summer School (T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>13-Nov-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>20-Nov-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>27-Nov-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>4-Dec-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>11-Dec-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term 4 ends (20/12)</td>
<td>51</td>
<td>18-Dec-17</td>
<td>Teaching Recess</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>25-Dec-17</td>
<td></td>
<td>25-26 December</td>
<td>Christmas Day/Boxing Day</td>
</tr>
<tr>
<td>53</td>
<td>1-Jan-18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index

After hours access 136
Animal Behaviour major 41
Bachelor of Engineering (Honours) 11
BE(Hons) programmes 12
Bachelor of Science 37
Bachelor of Science (Technology) 39
Biochemistry major 44
Biological Sciences major 46
Biological Sciences papers 85
Biotechnology Major 48
Bridging programmes 78
Certificate of University Preparation – CUP 80
Changing papers 132
Chemical and Biological Engineering programme 13
Chemistry major 51
Chemistry papers 92
Computer labs 136
Conjoint degrees 74
Contact details 5
Degrees 8
Discipline policy 136
Earth Sciences major 54
Earth Sciences papers 97
Electronic Engineering programme 19
Electronics papers 103
Engineering (Canterbury) 77
Engineering papers 108
Entry requirements 9
Environmental Sciences major 58
Environmental Sciences papers 112
First year mentors 7
Forest Engineering (Canterbury) 78
Foundation Studies 79
General information 132
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General rules</td>
<td>136</td>
</tr>
<tr>
<td>Handy tips</td>
<td>132</td>
</tr>
<tr>
<td>How to enrol</td>
<td>7</td>
</tr>
<tr>
<td>Impaired performance</td>
<td>134</td>
</tr>
<tr>
<td>Intermediates</td>
<td>77</td>
</tr>
<tr>
<td>Land and Freshwater Environments</td>
<td>59</td>
</tr>
<tr>
<td>Marine Sciences</td>
<td>59</td>
</tr>
<tr>
<td>Materials and Processing papers</td>
<td>113</td>
</tr>
<tr>
<td>Materials and Process Engineering programme</td>
<td>27</td>
</tr>
<tr>
<td>Mechanical Engineering programme</td>
<td>30</td>
</tr>
<tr>
<td>Other programmes</td>
<td>77</td>
</tr>
<tr>
<td>Physics papers</td>
<td>121</td>
</tr>
<tr>
<td>Psychology major</td>
<td>65</td>
</tr>
<tr>
<td>Psychology papers</td>
<td>123</td>
</tr>
<tr>
<td>Safety policy</td>
<td>137</td>
</tr>
<tr>
<td>Scholarships</td>
<td>136</td>
</tr>
<tr>
<td>Science Foundation</td>
<td>79</td>
</tr>
<tr>
<td>Science International</td>
<td>68</td>
</tr>
<tr>
<td>Software Engineering programme</td>
<td>33</td>
</tr>
<tr>
<td>Papers</td>
<td>81</td>
</tr>
<tr>
<td>Support networks</td>
<td>134</td>
</tr>
<tr>
<td>Surveying (Otago)</td>
<td>78</td>
</tr>
<tr>
<td>Teaching and assessment periods 2017</td>
<td>140</td>
</tr>
<tr>
<td>Te pūtaiao me ngā take Māori</td>
<td>71</td>
</tr>
<tr>
<td>Understanding paper codes</td>
<td>82</td>
</tr>
<tr>
<td>University terms</td>
<td>138</td>
</tr>
<tr>
<td>Work placements</td>
<td>75</td>
</tr>
<tr>
<td>Work placement papers</td>
<td>129</td>
</tr>
<tr>
<td>100 level Science papers</td>
<td>83</td>
</tr>
</tbody>
</table>
WHERE THE WORLD IS GOING

TE AHUNGA O TE AO